跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾采瑜
研究生(外文):CHUNG,TSAI-YU
論文名稱:網路論壇之個案分析─Mobile01
論文名稱(外文):Case study of web forum ─ Mobile01
指導教授:鄭麗珍鄭麗珍引用關係
指導教授(外文):CHENG,LI-CHEN
口試委員:陳彥良胡雅涵
口試委員(外文):CHEN,YEN-LIANGHU,YA-HAN
口試日期:2017-06-19
學位類別:碩士
校院名稱:東吳大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:虛假評論網路寫手網路論壇
外文關鍵詞:fake reviewfake reviewerweb forum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
網際網路的蓬勃發展改變了人們表達自己以及與他人互動的方式,進而使得線上評論內容影響了消費者的決策。目前企業開始重視消費者在網上的評論,會透過觀察的機制,希望提升網路上正向評論,能為公司帶來業績或名望。因此有些企業會聘請寫手,來撰寫評論希望藉此提升自家的產品或服務的正向口碑。過去國外這方面的研究大多是以評論內容為基礎,透過亞馬遜網站的外包服務去聘請寫手,已提出演算法過濾出虛假評論。但這些資料不夠真實,且過去台灣因為有三星寫手事件,有一份資料指出Mobile01的Samsung版的可疑內容,因此本研究以此內容作為研究與分析的個案資料,整理過濾評論者與評論等相關資料,建立一個研究的資料集,希望提供後續相關研究。除此之外,本研究進一步整理與分析評論者的行為,也歸納出一些有趣的行為。
The rapid growth of the Internet has changed the way people express themselves and interact with others. It makes online customer reviewers of both products and service can affect the consumers’ decisions. However, positive opinions can help business to bring in benefits or raise their reputation. Therefore, some of the businesses will hire spammers to do something for them such as improving their target products/service or attempting to defame their competitors. Most of prior works used reviews’ content based to filter the fake reviews. In this study, we focused on the data on the web forum called Mobile01 and analyzed spammer behaviors based on user behaviors in order to provide insight for related studies. Finally, we explored some interesting finding about spammers.
誌謝.....................i
摘要....................ii
Abstract...............iii
目錄....................iv
表目錄..................vi
圖目錄.................vii
第壹章、緒論..............1
第貳章、文獻探討...........3
2.1意見探勘..............3
2.2虛假評論...............4
2.2.1虛假評論內容偵測.....5
2.2.2評論者行為偵測.......6
2.3社群網路分析...........9
第參章、研究方法..........11
3.1Mobile01資料蒐集......12
3.2虛假評論者帳號蒐集.....17
3.3資料前處理模組.........20
案例舉例.................22
第肆章、實驗設計與結果.....26
4.1 實驗設計.............26
4.2 實驗結果.............27
4.2.1 基本資料建立........27
4.2.2 評論者發文探究......28
4.2.1 評論者圖形探勘......34
第五章、結論..............36
參考文獻..................37
英文部分..................37

Chen, Y.-R., & Chen, H.-H. (2015). Opinion spam detection in web forum: a real case study. Paper presented at the Proceedings of the 24th International Conference on World Wide Web.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier.
Hancock, J. T., Curry, L. E., Goorha, S., & Woodworth, M. (2007). On lying and being lied to: A linguistic analysis of deception in computer-mediated communication. Discourse Processes, 45(1), 1-23.
Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., . . . Samatova, N. (2014). Community detection in large‐scale networks: a survey and empirical evaluation. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 426-439.
Hu, M., & Liu, B. (2004a). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.
Hu, M., & Liu, B. (2004b). Mining opinion features in customer reviews. Paper presented at the AAAI.
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42-53.
Huan, J., Wang, W., & Prins, J. (2003). Efficient mining of frequent subgraphs in the presence of isomorphism. Paper presented at the Data Mining, 2003. ICDM 2003. Third IEEE International Conference on.
Huan, J., Wang, W., Prins, J., & Yang, J. (2004). Spin: mining maximal frequent subgraphs from graph databases. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.
Inokuchi, A., Washio, T., & Motoda, H. (2000). An apriori-based algorithm for mining frequent substructures from graph data. Paper presented at the European Conference on Principles of Data Mining and Knowledge Discovery.
Jiang, C., Coenen, F., & Zito, M. (2010). Frequent sub-graph mining on edge weighted graphs. Paper presented at the International Conference on Data Warehousing and Knowledge Discovery.
Jindal, N., & Liu, B. (2008). Opinion spam and analysis. Paper presented at the Proceedings of the 2008 International Conference on Web Search and Data Mining.
Jindal, N., Liu, B., & Lim, E.-P. (2010). Finding unusual review patterns using unexpected rules. Paper presented at the Proceedings of the 19th ACM international conference on Information and knowledge management.
Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B., & Lauw, H. W. (2010). Detecting product review spammers using rating behaviors. Paper presented at the Proceedings of the 19th ACM international conference on Information and knowledge management.
Liu, R., Feng, S., Shi, R., & Guo, W. (2014). Weighted graph clustering for community detection of large social networks. Procedia Computer Science, 31, 85-94.
Mihalcea, R., & Strapparava, C. (2009). The lie detector: Explorations in the automatic recognition of deceptive language. Paper presented at the Proceedings of the ACL-IJCNLP 2009 Conference Short Papers.
Mukherjee, A., Liu, B., & Glance, N. (2012). Spotting fake reviewer groups in consumer reviews. Paper presented at the Proceedings of the 21st international conference on World Wide Web.
Mukherjee, A., Liu, B., Wang, J., Glance, N., & Jindal, N. (2011). Detecting group review spam. Paper presented at the Proceedings of the 20th international conference companion on World wide web.
Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. (2013a). Fake review detection: Classification and analysis of real and pseudo reviews. Retrieved from
Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013b). What yelp fake review filter might be doing? Paper presented at the ICWSM.
Narayanan, R., Liu, B., & Choudhary, A. (2009). Sentiment analysis of conditional sentences. Paper presented at the Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1.
Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying words: Predicting deception from linguistic styles. Personality and social psychology bulletin, 29(5), 665-675.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2), 1-135.
Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830.
Severyn, A., Moschitti, A., Uryupina, O., Plank, B., & Filippova, K. (2016). Multi-lingual opinion mining on youtube. Information Processing & Management, 52(1), 46-60.
Sun, J., Wang, G., Cheng, X., & Fu, Y. (2015). Mining affective text to improve social media item recommendation. Information Processing & Management, 51(4), 444-457.
Titov, I., & McDonald, R. (2008). Modeling online reviews with multi-grain topic models. Paper presented at the Proceedings of the 17th international conference on World Wide Web.
Vrij, A. (2008). Detecting lies and deceit: Pitfalls and opportunities: John Wiley & Sons.
Wang, C.-C., Day, M.-Y., & Lin, Y.-R. (2016). A Real Case Analytics on Social Network of Opinion Spammers. Paper presented at the Information Reuse and Integration (IRI), 2016 IEEE 17th International Conference on.
Wang, G., Xie, S., Liu, B., & Philip, S. Y. (2011). Review graph based online store review spammer detection. Paper presented at the 2011 IEEE 11th International Conference on Data Mining.
Wire, N. (2009). Global advertising: Consumers trust real friends and virtual strangers the most. Retrieved June, 1, 2010.
Zhao, J., Liu, K., & Xu, L. (2016). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions: MIT Press.
Zhao, Y., Qin, B., Hu, S., & Liu, T. (2010). Generalizing syntactic structures for product attribute candidate extraction. Paper presented at the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.
Zhou, L., Shi, Y., & Zhang, D. (2008). A statistical language modeling approach to online deception detection. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1077-1081.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top