跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.49) 您好!臺灣時間:2025/12/01 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴乙瑄
研究生(外文):Lai, Yi-Shuan
論文名稱:依據光線傳播率趨勢圖且使光線傳播率圖具最佳解之單張影像去霧
論文名稱(外文):Single Image Dehazing Using Transmission Heuristic with Optimal Transmission Map
指導教授:許秋婷許秋婷引用關係
指導教授(外文):Hsu, Chiou-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:42
中文關鍵詞:去霧全域最佳解光線傳播率圖
外文關鍵詞:dehazeglobal optimal solutiontransmission heuristicdifferent wavelengths
相關次數:
  • 被引用被引用:0
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:1
在惡劣天氣條件下的能見度極差是因為大氣懸浮粒子所造成的,例如:大霧
或水氣。「還原一張受上述大氣影響的模糊影像」這類問題通常簡稱為「去霧」。單張影像去霧所面臨的挑戰主要來自於兩項未知:場景深度以及場景原始色彩。其中光線傳播率圖包含了場景深度的資訊,求得光線傳播率圖的近似值便是解決去霧問題中最關鍵的步驟。在本論文中,我們假設光線傳播率圖具有特定的趨勢,並依據此假設將去霧模型推導出具最佳傳播率圖之解的式子。我們所推導的目標函數保證有全域最佳解,因此得到的光線傳播率圖相當準確,並且同一物體的深度具有一致性。最後,我們考慮到光在三個色彩通道上因波長不同而導致傳播率有所差異。利用最佳光線傳播率圖、並考慮每個色彩通道上具備不同波長的特性,我們的方法能夠成功的去除掉影像中的霧靄影響,得到相當優異的影像。
The poor visibility in bad weather condition, such as haze and fog, is caused by the stationary atmospheric effects of suspended particles. The challenge of restoring such atmospheric effects, usually referred to as “dehazing”, from single image mainly comes from the double uncertainty of scene depth and scene radiance. Approximation of the transmission, which encodes the scene depth information, is the most significant step to solve the dehazing problem. In this thesis, we propose to derive an optimal transmission map under a heuristic assumption in the dehazing model. The proposed objective function guarantees to have a global optimal solution, and the obtained transmission map is accurate and preserves the depth-consistency of the same object. Finally, we further take the difference in light wavelengths transmission between three color channels into account. Using the optimal transmission map and considering the different wavelengths of each color channel, our method recovers haze-free images with excellent result.
中文摘要
Abstract
List of contents
1. Introduction
2. Related Work
2.1. General Dehazing Method
2.1.1 Using additional information from Multi-images
2.1.2 Obtaining or given the depth information
2.1.3 Imposing assumptions or constraints
2.2. Different Wavelengths of Transmission
2.3.Discussion
3. Proposed Method
3.1. Deriving the Optimal Transmission for Gray-Level Image Dehazing
3.2. The Optimal Transmission for Color Image
3.3. Transmission Heuristic
3.4. Different Wavelengths of Transmission
4. Experimental Results
4.1. Evaluation
4.2. Comparison
5. Discussion and Limitation
5.1. Sensitive to Horizon Detection
5.2. Sensitive to JPEG Blocking Artifact
5.3. Multiple-Color Object Case
5.4. Heavy Haze Case
6. Conclusion
7. References
[1] S. Shwartz, E. Namer, and Y.Y. Schechner, “Blind Haze Separation,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 1984–1991, 2006.
[2] S.G. Narasimhan and S.K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 6 pp. 713–724, June 2003.
[3] S.G. Narasimhan and S.K. Nayar, “Interactive Deweathering of an Image Using Physical Models,” Proc. IEEE Workshop on Color and Photometric Methods in Computer Vision, pp. 1387–1394, Oct. 2003.
[4] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, “Deep photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graphics, vol. 27, no. 5, pp.116:1–116:10, 2008.
[5] R. Fattal, “Single Image Dehazing,” ACM Trans. on Graphics, 2008.
[6] J. Tarel and N. Hautiere, “Fast Visibility Restoration from A Single Color or Gray Level Image,” Proc. IEEE Conf. Computer Vision, pp. 2201–2208, 2009.
[7] R. Tan, “Visibility in Bad Weather from a Single Image,” IEEE Conf. Computer Vision and Pattern Recognition, pp.1–8, June 2008.
[8] K. He, J. Sun and X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, No.12, pp.2341–2353, Aug. 2010.
[9] K. Nishino, L. Kratz and S. Lombardi, “Bayesian Defogging,” International Journal of Computer Vision, pp.1–16, 2011.
[10] A. Levin, D. Lischinski and Y. Weiss, “A Closed Form Solution to Natural Image Matting,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 61–68, June 2006.
[11] S. Paris and F. Durand, “A Fast Approximation of the Bilateral Filter using a Signal Processing Approach,” Proc. European Conf. Computer Vision, pp. 568–580, 2006.
[12] Y.Y. Schechner, S.G. Narasimhan, and S.K. Nayar, “Instant Dehazing of Images Using Polarization,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 325-332, 2001.
[13] J. Chiang and Y. Chen, “Underwater Image Enhancement by Wavelength Compensation and Dehazing,” IEEE Trans. Image Processing, Vol. 21, No. 4, April 2012.
[14] S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Amer., vol. 53, no. 2, pp.214–233, 1963.
[15] L. Chao and M. Wang, “Removal of Water Scattering,” Proc. IEEE International Conference on Computer Engineering and Technology (ICCET), vol. 2, pp. 35–39, 2010.
[16] S. Narasimhan, S. Nayar, “Chromatic Framework for Vision in Bad Weather, ” IEEE Conference on Computer Vision and Pattern Recognition, 2000.
[17] S. Paris and F. Durand, “A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach,” Proc. European Conf. Computer Vision, pp. 568–580, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top