跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:常若愚
研究生(外文):Jo-Yu Chang
論文名稱:IEEE802.15.4無線個人區域網路之CSMA/CA碰撞效能分析與研究
論文名稱(外文):The Collision Analysis of CSMA/CA for IEEE 802.15.4 Low-Rate Wireless Personal Area Network
指導教授:李維聰李維聰引用關係林志敏林志敏引用關係
指導教授(外文):Wei-Tsong LeeJim-Min Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:低速率無線個人區域網路碰撞
外文關鍵詞:LR-WPANIEEE802.15.4CSMA/CA
相關次數:
  • 被引用被引用:11
  • 點閱點閱:563
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:2
隨著無線網路技術的快速發展,許多本來存在的網路服務也逐漸走向無線網路上發展;IEEE 802.11無線區域網路的普遍,以及IEEE 802.16無線寬頻網路在近年的商業標準化,都使得無線網路技術越來越顯重要,也有越來越多相關應用及產品出現。而無線個人區域網路從藍芽掘起之後,也逐漸的開始受到注目;而隨著個人隨身數位設備的流行(如手機、PDA),加速了無線個人區域網路技術的研究,而其中之一的應用-無線感測網路,也是目前開始被廣泛討論的研究話題之一。
無線感測網路乃是在一個待感測區域內分佈高密度之感測節點設備,每個節點依其特定要求偵測該區域之數據(例如溫度、濕度、壓力等等),在經由無線傳輸技術將所感測收集之數據傳送至一特定資料匯集設備後,再進行資料分析或做出相對應之行動。無線感測網路(Wireless Sensor Network) 是屬於無線個人區域網路中一種應用,目前並無完整規格訂定,在目前的協定架構上是採用IEEE 802.15.4 (Low-Rate Wireless Personal Area Network,LR-WPAN),其具有低速率、傳輸距離短、低功率、架構較簡單成本低、體積小等特性,都與無線感測網路的應用特性相近。
在IEEE 802.15.4協定中,對於封包資料在傳輸時所遇到的碰撞或是封包損毀遺失等情形,其傳輸特性不同於一般網路;一般網路隨時都會有許多的資料封包在傳送,但無線感測網路通常只需傳送少量的感測資料,且傳輸時間間隔也較長(1min, 5min,甚至1hour送一次)。但對於碰撞的問題,如同其他網路一樣都有可能發生,而IEEE 802.15.4與802.11一樣,採用CSMA/CA來解決(稱做Slotted CSMA/CA),其中有部份的不同,也將在本論文中做說明。而本篇論文將會對IEEE 802.15.4在封包資料碰撞的機制上,利用程式來模擬IEEE 802.15.4的運作,針對碰撞解決之Slotted CSMA/CA演算法做效能上的分析及研究,並試著在模擬程式的分析中找出IEEE 802.15.4 slotted CSMA/CA最佳的參數值。

With the growth quickly of the wireless network technology, there are more and more existent network servies trending to adopt wireless network technology. The popularization of IEEE 802.11 Wireless LAN and IEEE 802.16 Wireless Broadband Network, all make the wireless network technology become more and more important, and there are many relative technologies and products appeared. Following Bluetooth’s rise and development, Wireless Personal Area Network (WAPN) also became popular. Therefore, one application of WPAN – Wireless Sensor Network, also start to be discuss widely.
Wireless Sensor Network (WSN) make use of a large number of sensor nodes to dispose in a particular range, and every sensor node must to sense the special information in the area (ex:temperature, humidity, pressure,etc). Then, transmit the data through wireless transmission technology to a special equipment (Sink) to analyze to sensing data and to do corresponding actions. WSN is one application of WPAN, there is no definite specifications. Now, many WSN research use IEEE 802.15.4 to design, it characteristic includes low rate, low transit distance, low power, simple architecture, low cost, small size, etc. All characteristic are similar to the applications of WSN.
In IEEE 802.15.4, packets maybe occur collision or packet loss when sensor nodes try to transit. WSN’s transmission characteristic is differ from general network. General network always have large number of packets to be transmit, but WSN transmissive interval is long (1 min, 5 min, even 1 hour.).therefore, the characteristic of collision problem maybe differ from general network. IEEE 802.15.4 make use of CSMA/CA to solve collision problem, the CSMA/CA algorithm is similar to IEEE 802.11, but not all the same. We called Slotted CSMA/CA algorithm. I will explain in this paper. Furthermore, in this paper, I will aim at IEEE 802.15.4 collision mechanism, and use program to simulate the operation of IEEE 802.15.4. Finally, Analyze and estimate the performance of Slotted CSMA/CA algorithm, and try to find out the Slotted CSMA/CA’s optimum BE parameter in simulation result.

誌謝................................................................... i
中文摘要.............................................................. ii
英文摘要..............................................................iii
目錄 ................................................................. iv
圖目錄 ...............................................................vii
表目錄................................................................ ix
第一章 緒論.......................................................1
1.1 前言......................................................1
1.2 研究動機與目的............................................2
1.3 本論文之組織架構..........................................3
第二章 無線感測網路之簡介.........................................4
2.1 無線感測網路的發展及介紹..................................4
2.2 無線感測網路之規格制定....................................5
2.2.1 感測器硬體架構及功能................................9
2.2.2 資料及網路通訊模式.................................10
2.2.3 資料傳輸模式.......................................11
2.2.4 無線感測網路架構...................................12
2.2.5 無線感測網路的應用潛力.............................12
2.3 無線感測網路之相關研究.............................14
2.3.1 相關研究之概況.....................................14
2.3.2 相關研究之主題探討.................................17
2.3.2.1 感測器結構設計..........................17
2.3.2.2 路由協定................................17
2.3.2.3 媒體存取控制............................19
2.3.2.4 睡眠排程演算法..........................20
2.3.2.5 容錯機制................................21
2.3.2.6 網路安全................................21
2.4 無線感測網路未來之挑戰.................................23
第三章 IEEE 802.15.4通訊協定之簡介.............................25
3.1 IEEE 802.15.4協定之發展及特性介紹......................25
3.2 IEEE 802.15.4協定之PHY 與MAC...........................30
3.2.1 IEEE 802.15.4協定之PHY............................30
3.2.2 IEEE 802.15.4協定之MAC............................34
3.2.2.1 MAC Specification概述...................34
3.2.2.2 SuperFrame Structure....................35
3.2.2.3 資料傳輸模式............................36
3.2.2.4 訊框格式(Frame Format) .................38
3.2.2.5 IFS(Inter-Frame Space) .................40
3.2.2.6 GTS(guaranteed Time Slot) ..............41
3.3 IEEE 802.15.4之時槽式載波感測多重存取碰撞避免演算法.....44
3.3.1 IEEE 802.15.4 CSMA/CA mechanism簡介.....................44
3.3.2 IEEE 802.15.4 slotted CSMA/CA algorithm.................45
3.3.3 對slotted CSMA/CA演算法之分析及研究重點.................49
第四章 數學分析模型..............................................50
4.1 Markov Chain Model模型的建立.............................50
4.2 模型中公式的簡述.........................................52
第五章 實驗模擬之結果與討論......................................56
5.1 實驗模擬之介紹及環境設定.................................56
5.2 實驗模擬之結果與分析.....................................58
5.2.1 模擬實驗一(throughput) ............................59
5.2.2 模擬實驗二(average delay time) ....................61
5.2.3 模擬實驗三(packet loss rate) ......................62
5.2.4 模擬實驗四(最佳BE值的分析) ........................64
5.2.4.1 模擬數據之分析比較...................64
5.2.4.2 正規化之分析比較.....................67
5.3 實驗模擬結果之討論...........................................72
第六章 結論與未來工作................................................73
參考文獻..............................................................75
附錄..................................................................79
作者簡歷..............................................................85



[1]IEEE P802.11, The Working Group for Wireless LANs UEL:
http://grouper.ieee.org/groups/802/11/
[2]K. Sohrabi et al., “Protocols for Self-Organization of a
Wireless Sensor Network,” IEEE Pers. Commun., Oct. 2000, pp. 16–27.
[3]W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for Information Dissemination in Wireless Sensor Networks,” in Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 174-185, Aug. 1999.
[4]Institute of Electrical and Electronic Engineers, ”Draft Standard for Part 15.4:
Wireless Medium Access Control Layer (MAC) and Physical Layer (PHY)
specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),” Draft
P802.15.4/D18, Feb. 2003.
[5]Pat Kinney et al., Template for IEEE 802.15.4 LR-WPAN, URL:
http://www.ieee802.org/15/pub/TG4
[6]Paul Nikolich et al., Template for IEEE 802 parts, URL:
http://www.ieee802.org
[7]E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, A. Chandrakasan, “Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks,” Proceedings of ACM MobiCom’01, Rome, Italy, pp. 272-286, July 2001.
[8]Akyiliz I.F., Weilian Su, Sankarasubramaniam Y., Cayirci E.,“A survey on sensor
networks,” IEEE Communications Magazine, vol.40 no.8, Aug. 2002, pp.102-114.
[9]W. Heinzelman et al., Template for Wireless Sensor Network, URL:
http://www-mtl.mit.edu/research/icsystems/uamps
[10]Mani B. Srivastava et al., Template for Network & Embedded System, URL:
http://nesl.ee.ucla.edu
[11]K. Bult et al., Template for Wireless Integrated Network Sensors,
http://www.janet.ucla.edu/WINS
[12]Bryan Atwood et al., Template for Smart Dust, URL:
http://robotics.eecs.berkeley.edu/~pister/SmartDust
[13]David Culler et al., Template for Wireless Sensor Network of TinyOS, URL:
http://webs.cs.berkeley.edu
[14]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor network: a survey,” Computer Networks, vol. 38, 2002, pp. 393-422.
[15]S. Tilak, B. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy of wireless micro-sensor network models,” Mobile Computing and Communications Review, vol. 1 no. 2, 2002.
[16]J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan, “Building efficient wireless sensor networks with low-level naming,” in Proceedings of the Eighteenth ACM symposium on Operating Systems Principles, Oct 2001, pp. 146-159.
[17]W. Heinzelman,“Application-Specific Protocol Architectures for Wireless Networks,” Ph.D. thesis, Massachusetts Institute of Technology, 2000.
[18]C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, “Directed diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, Feb. 2003, pp. 2-16.
[19]M. Zorzi, and R. R. Rao, “Geographic Random Forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance,” to appear in the IEEE Transactions on Mobile Computing, vol. 2, no. 4, Oct.-Dec. 2003.
[20]M. Zorzi, and R. R. Rao, “Geographic Random Forwarding (GeRaF) for ad hoc and sensor networks: multihop performance,” to appear in the IEEE Transactions on Mobile Computing, vol. 2, no. 4, Oct.-Dec. 2003.
[21]K. Sohrabi and G. J. Pottie, “Performance of a novel self-organization protocol for wireless ad hoc sensor network,” in Proceedings of the IEEE 50th Vehicular Technology Conference, pp. 1222-1226,1999.
[22]W. Ye, J. Heidemann, D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” IEEE INFOCOM 2002, pp. 1567-1576, 2002.
[23]D. Tian and N. D. Georganas, “A coverage-preserving node scheduling scheme for large wireless sensor networks,” in Proceedings of the first ACM international workshop on Wireless sensor networks and applications, pp. 32-41, 2002.
[24]J. Deng, Y. S. Han, B. Heinzelman, and P. K. Varshney, “Scheduling Sleeping Nodes in High Density Cluster-based Sensor Networks,” submitted to the IEEE International Conference on Communications, 2004.
[25]J. Deng, Y. S. Han, B. Heinzelman, and P. K. Varshney, “Balanced-energy sleep scheduling scheme for high density cluster-based sensor networks,” submitted to the Third International Symposium on Information Processing in Sensor Networks (IPSN’04), 2004.
[26]W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks,” 10th ACM Conference on Computer and Communications Security (CCS2003), Washington DC, Oct. 2003.
[27]W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A Witness-Based Approach for Data Fusion Assurance in Wireless Sensor Networks," IEEE 2003 Global Communications Conference (Globecom'2003), San Francisco, CA, December, 2003.
[28]G. Hoblos, M. Staroswiecki , A. Aitouche, “Optimal design of fault tolerant sensor networks,” IEEE International Conference on Control Applications, Anchorage, AK, pp. 467-472, Sep 2000.
[29]H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor Networks,” 2000 IEEE Symposium on Security and Privacy, Berkeley, CA, May 11-14, 2003.
[30]L. Eschenauer and V.D. Gligor, “A key-management scheme for distributed sensor networks,” in Proceedings of the 9th ACM Conference on Computer and Communication Security, pp. 41-47, Nov. 2002.
[31]A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, “SPINS: Security protocols for sensor networks,” Mobile Computing and Networking 01’, Rome, Italy, 2001.
[32]T.-Y. Wang, Y. S. Han, and P. K. Varshney, “Fault-Tolerant Classification in Multisensor Networks Using Coding Theory,” in Proceedings of the Sixth International Conference of Information Fusion, pp. 772-779, 2003.
[33]W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high variability: Statistical analysis of ethernet LAN traffic at the source level,” IEEE/ACM Trans. Networking, vol. 5, Feb. 1997, pp.71–86.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊