跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林耀聖
研究生(外文):Yao-Sheng Lin
論文名稱:全域式光學同調斷層掃描術之研究
論文名稱(外文):Study of full-field optical coherence tomography
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
口試委員:邱政偉郭文娟
口試委員(外文):Jeng-Wei TjiuWen-Chuan Kuo
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:109
中文關鍵詞:全域式光學同調斷層掃描術細胞成像干涉效率橫向優先影像運算法色散補償
外文關鍵詞:Full-field optical coherence tomographycell tomographyinterference efficiencylateral-first image processingdispersion compensation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
光學同調斷層掃描術為現今重要的生醫造影技術之一,其縱向解析度受到光源的中心波長及頻寬所影響。針對此點,本實驗室自行生長了中心波長及頻寬分別為560 nm及95 nm的單纖衣摻鈰釔鋁石榴石晶體光纖,並以此光源架設了一套全域式光學同調斷層掃瞄系統,經實驗可得極高的解析度,縱向及橫向分別為1.47 μm及1.28 μm,可清楚解析多數生物樣本的細微結構。
本論文中,探討了橫向優先與縱向優先之影像運算法,並於橫向優先法中討論濾波頻帶對解析度之影響,得到頻帶上邊界應大於橫向解析頻率,而下邊界只需濾除直流成份之結論。在此情況下,兩運算法有著相近的解析能力,因此在橫向優先法之運算下,可望提升系統呈現影像之即時性。
利用本系統量測單顆細胞樣本,藉由改變參考光強及分析干涉效率之變化,歸納出細胞量測時合適的參考鏡反射率約為6%。接著,為了進行較深處的樣本量測,我們設計一個可調式元件來補償色散效應,同時建立其數學模型並由實驗結果得到了驗證。最後實際量測330 μm深度下的單顆細胞,結果顯示此元件的補償確實提升了解析度及訊噪比,使樣本深處的細胞更為清晰,展示了此系統的實際應用性。

Optical coherence tomography (OCT) has become one of the most important techniques in biomedical imaging realm. Its axial resolution is determined by central wavelength and bandwidth of the light source. Due to this reason, we made the Ce3+:YAG single-cladding crystal fiber, which generate amplified spontaneous emission centered at 560 nm with bandwidth of 95 nm. And we use it as the light source to demonstrate a full-field OCT with axial resolution of 1.468 μm and lateral resolution of 1.28 μm.
In this thesis, we discuss about axial-first and lateral-first image processing method. In the section of lateral-first method, we further discuss the influence on resolution when tuning the range of band-pass filter. Then we give a conclusion that the upper limit of filter should be higher than the maximum spatial frequency sampled by lateral resolution, and the lower limit of filter only need to filter out the DC component. In this condition, both processing methods perform comparable resolution. Therefore, the instantaneity of OCT images could be improved in lateral-first image processing method.
We use full-field OCT to scan the single cell specimen and find out that the most suitable reflectivity of reference mirror is about 6%. In order to measure the deeper region of specimen, we design a component to compensate dispersion effect named adjustable dispersion compensator (ADC). We also build a mathematical model to describe the operation of ADC and successfully verify its validity from experimental result. Finally, we demonstrate that the quality of 330-μm-deep single cell OCT image can be improved by the help of ADC and shows the application potential of this homemade component.

誌謝 i
中文摘要 ii
Abstract iii
目 錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
第二章 光學同調斷層掃描術 3
2.1 低同調干涉術理論 3
2.2 基本架構及解析度 8
2.3 全域式光學同調斷層掃描術 11
第三章 系統架構及設計 13
3.1 系統光源 13
3.2 光學系統 18
3.3 壓電致動器之校正 21
3.4 系統測試 26
第四章 單顆細胞掃描 31
4.1 樣本介紹及製備 31
4.2 細胞影像 34
4.3 細胞量測之干涉效率分析 38
第五章 縱向優先與橫向優先之影像運算法比較 49
5.1 動機 49
5.2 縱向優先影像運算法 51
5.3 橫向優先影像運算法 54
5.4 解析度比較 62
第六章 可調式色散補償 76
6.1 色散之影響 76
6.2 可調式色散補償元件 82
6.2.1 元件設計 82
6.2.2 數學描述 84
6.2.3 補償機制 89
6.2.4 元件製備 96
6.2.5 驗證方法 99
第七章 結論與未來展望 105
參考文獻 107


[1]K. Takada, I. Yokohama, K. Chida, and J. Noda, "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Applied Optics, vol. 26, pp. 1603-1606, 1987.
[2]R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Optics Letters, vol. 12, pp. 158-160, 1987.
[3]D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W G Stinson, W. Chang, et al., "Optical coherence tomography," Science, vol. 254, pp. 1178-1181, 1991.
[4]E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, et al., "In vivo retinal imaging by optical coherence tomography," Optics Letters, vol. 18, pp. 1864-1866, 1993.
[5]M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, et al., "Optical coherence tomography of the human retina," Archives of Ophthalmology, vol. 113, pp. 325-332, 1995.
[6]J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," Journal of the American Academy of Dermatology, vol. 37, pp. 958-963, 1997.
[7]鄭乃嘉, "結合光學同調斷層掃描與共焦螢光顯微術之研究," 國立臺灣大學, 碩士論文, 2010.
[8]M. V. Klein and T. E. Furtak, Optics: Wiley New York, 1990.
[9]A. Yariv and P. Yeh, Photonics-Optical Electronics in Modern Communication: Oxford University Press, 2006.
[10]W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications: Springer, 2008.
[11]A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Applied Optics, vol. 43, pp. 2874-2883, 2004.
[12]G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. Cohen-Adad, "Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers," Journal of Luminescence, vol. 102, pp. 417-425, 2003.
[13]C. Burrus and J. Stone, "Single-crystal fiber optical devices: A Nd: YAG fiber laser," Applied Physics Letters, vol. 26, p. 318, 1975.
[14]Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, et al., "Luminescence studies of Ce : YAG using vacuum ultraviolet synchrotron radiation," Materials Research Bulletin, vol. 41, pp. 1959-1963, 2006.
[15]W. Chen, Y. Zhang, S. Zhang, and X. Long, "Polarization flipping and hysteresis phenomenon in laser with optical feedback," Optics Express, vol. 21, pp. 1240-1246, 2013.
[16]L. Hayflick and P. S. Moorhead, "The serial cultivation of human diploid cell strains," Experimental Cell Research, vol. 25, pp. 585-621, 1961.
[17]L. C. Chiang, W. Chiang, H. S. Yu, H. M. Sheu, and H. Y. Chen, "Establishment and characterization of a continuous human basal cell carcinoma cell line from facial skin (I) cytological behavior of early passages," The Kaohsiung Journal of Medical Sciences, vol. 10, pp. 170-176, 1994.
[18]謝宗勳, "超高解析光學同調斷層掃描於單顆皮膚細胞之造影與分析," 國立臺灣大學, 碩士論文, 2012.
[19]C. S. Hughes, L. M. Postovit, and G. A. Lajoie, "Matrigel: A complex protein mixture required for optimal growth of cell culture," Proteomics, vol. 10, pp. 1886-1890, 2010.
[20]D. Gabor, "Theory of communication," Journal of the IEE, vol. 93, pp. 429-457, 1946.
[21]J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, "Image restoration method based on Hilbert transform for full-field optical coherence tomography," Applied Optics, vol. 47, pp. 459-466, 2008.
[22]J. Lorenzo-Ginori, "An Approach to the 2D Hilbert Transform for Image Processing Applications," in Image Analysis and Recognition. vol. 4633, M. Kamel and A. Campilho, Eds., ed: Springer Berlin Heidelberg, 2007, pp. 157-165.
[23]K. Kohlmann, "Corner detection in natural images based on the 2D Hilbert transform," Signal Processing, vol. 48, pp. 225-234, 1996.
[24]T. Bulow and G. Sommer, Multi-Dimensional Signal Processing Using an Algebraically Extended Signal Representation Springer, 1997.
[25]S. L. Hahn, "Multidimensional complex signals with single-orthant spectra," Proceedings of the IEEE, vol. 80, pp. 1287-1300, 1992.
[26]K. G. Larkin, D. J. Bone, and M. A. Oldfield, "Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform," The Journal of the Optical Society of America A, vol. 8, pp. 1862-1870, 2001.
[27]M. Wielgus, "Amplitude demodulation of interferometric signals with a 2D Hilbert transform," Challenges of Modern Technology, vol. 2, pp. 8-11, 2011.
[28]A. Styk and K. Patorski, "Derivation of quasi-parallel glass plate parameters tested in a Fizeau interferometer," Optical Measurement Systems for Industrial Inspection V, vol. 6616, 2007.
[29]A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics: Cambridge University Press, 1998.
[30]G. D. Reid and K. Wynne, Ultrafast Laser Technology and Spectroscopy: Wiley, 2000.
[31]A. G. V. Engen, S. A. Diddams, and T. S. Clement, "Dispersion measurements of water with white-light interferometry," Applied Optics, vol. 37, pp. 5679-5686, 1998.
[32]P. D. Groot, "Chromatic dispersion effects in coherent absolute ranging," Optics Letters, vol. 17, pp. 898-900, 1992.
[33]E. G. Neumann, Single-Mode Fibers: Springer, 1988.
[34]C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, "Dispersion induced multiple signal peak splitting in partial coherence interferometry," Optics Communications, vol. 154, pp. 179-185, 1998.
[35]T. R. Hillman and D. D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Optics Express, vol. 13, pp. 1860-1874, 2005.
[36]Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan," Applied Optics, vol. 46, pp. 8394-8401, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top