跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡書瑋
研究生(外文):Shu-Wei Hu
論文名稱:探討添加幾丁聚醣對聚乳酸酯奈米複合材質機械特性的影響
論文名稱(外文):Assessment of mechanical properties of PLA nanocomposite in the presence of chitosan
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Shaun Chen
口試委員:蔣炳煌馮臨惠劉佳玲
口試日期:2010-08-31
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:133
中文關鍵詞:奈米複合膜生物降解性幾丁聚醣聚乳酸酯
外文關鍵詞:nanotechnologybiodegradablepolylactidechitosan
相關次數:
  • 被引用被引用:2
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奈米填充物質添加於聚烯烴類化合物結構中之技術已廣泛應用於包
裝研發,使得包裝材質能有更好的阻隔性及機械性質。本研究之目的在
於探討聚乳酸酯添加奈米級幾丁聚醣製備成複合膜及其特性之測定。一
般幾丁聚醣粒徑大小範圍約在 5~10 μm 之間,利用高壓對撞可減少粒徑
尺寸,但會再聚集成大顆粒。添加 Tween-80 於酸性的幾丁聚醣溶液中,
可使得幾丁聚醣粒徑維持至奈米範圍間。由偏光顯微鏡觀察發現,添加
幾丁聚醣於聚乳酸酯中達 0.4~0.5%時,會使得複合膜表面結構較為緊
密。添加幾丁聚醣於聚乳酸酯為 0.4%時,奈米複合膜之玻璃轉換溫度
(Glass transition temperature, Tg)從 57.8℃上升至最高之 149.2℃。添
加幾丁聚醣也造成複合膜機械性質改變,抗拉強度在添加 0.4%的濃度時
即有明顯的下降(P<0.05),從 231.34 MPa 下降至 211.32 MPa,但是與
添加矽藻土之複合膜相比較,其抗拉強度還是較高,而添加 0.1%的幾丁
聚醣後,即會明顯下降複合膜的延展性(P<0.05),從 12.4%下降至
6.88%。另外,複合膜抗拉強度與延展性之間呈現反比的趨勢,並有高
度的相關性。因此,添加奈米級幾丁聚醣於聚乳酸酯中有利於增加複合
膜之結晶性及強度。本研究結果有助於改善聚乳酸酯包材性質,增加其
利用價值。

關鍵字:奈米複合膜、生物降解性、幾丁聚醣、聚乳酸酯
Incorporation of nano-filler into polyolefin structure has been widely
used in current packaging development for better performance, such greater
barrier and mechanical properties. The objectives of this study focused on
the preparation and characterization of nanocomposite made of PLA and
chitosan nanoparticles. Particle sizes of chitosan were ranging 5~10 μm, and
were reduced nano scale by homogenizer; however, chitosan particles
clustered to micrometers after standstill for hrs. Use of Tween-80 in an
acidic chitosan solution resulted to sustain the particles ranging nano-scale
after nanorization. Addition of 0.4% chitosan to PLA led to the surface
structure of the nanocomposite film more inseparable determined by
polarizing microscope. Glass transition temperatures (Tg) of the
nanocromposite films were from 57.8
o
C rising to 149.2
o
C in the presence of
0.4% chitosan. The addition of chitosan also modified the mechanical
properties of nanocomposite films, that the tensile strength significant
decreased with 0.4% chitosan added, and the tensile strength dropped from
231.34 MPa to 211.32 MPa. Moreover, the tensile strength of PLA/chitosan
was still greater than PLA/clay composite films. Added 0.1% chitosan
would decrease the elongation from 12.4% to 6.88%. On the other hand,
high negative correlation between tensile strength and elongation was
observed. Conclusively, incorporation of chitosan nanoparticles into PLA
microstructure is beneficial to greater crystallinity and thermal stability,
which may optimize its applications.

Keywords: nanotechnology, biodegradable, polylactide, chitosan
III
目錄
頁次
中文摘要 ............................................................................................................ I
英文摘要 .......................................................................................................... II
第一章、前言 ................................................................................................... 1
第二章、文獻回顧 ........................................................................................... 3
一、奈米材料 ............................................................................................ 3
(一) 奈米科技 ................................................................................... 3
(二)奈米材料分類 ......................................................................... 4
(三)奈米材料的特性 ..................................................................... 5
(四)奈米科技在食品瓹業的應用 ................................................. 7
二、奈米複合材質 .................................................................................. 17
(一)奈米複合材質定義 ............................................................... 17
(二)奈米複合材質的類型與特性 ............................................... 17
(三)奈米複合材質的製備 ........................................................... 19
三、天然材質之複合膜原料 .................................................................. 23
(一)生物分解性高分子物質 ....................................................... 23
(二)聚乳酸酯 ............................................................................... 24
(三)幾丁質與幾丁聚醣 ............................................................... 31
第三章、材料與方法 ..................................................................................... 41
一、詴驗材料 .......................................................................................... 41
(一)化學材料 .................................................................................... 41
(二) 詴驗儀器與設備 ...................................................................... 41
二、實驗架構 .......................................................................................... 44

IV
三、實驗方法 .......................................................................................... 45
(一) 聚乳酸酯/幾丁聚醣奈米複合材質製備 ................................. 45
(二) 聚乳酸酯/幾丁聚醣複合材質的分析 ..................................... 45
(三) 統計分析 .................................................................................. 57
第四章、結果與討論 ..................................................................................... 58
一、 幾丁聚醣粒徑分析 ........................................................................ 58
二、複合材質微結構觀察 ...................................................................... 66
(一)偏光顯微鏡觀察 ................................................................... 66
(二)掃描式電子顯微鏡觀察 ....................................................... 79
(三)原子力顯微鏡分析 ............................................................... 81
三、複合膜之物性分析 .......................................................................... 85
(一)傅立葉紅外線光譜分析 ....................................................... 85
(二)複合膜之熱安定性測詴 ....................................................... 85
(三)複合膜之機械性質分析 ....................................................... 88
四、聚乳酸複合膜之通透性測詴 .......................................................... 97
五、聚乳酸酯複合膜之抗菌效果 .......................................................... 97
第五章、結論 ............................................................................................... 103
第六章、參考文獻 ....................................................................................... 104
第七章、附錄 ............................................................................................... 119


V
圖目錄
頁次
圖一、奈米科技在食品與包裝之應用。 ................................................. 8
圖二、奈米技術在食品科技領域的應用。 ........................................... 10
圖三、奈米檢測器之應用。 ................................................................... 12
圖四、掃描式電子顯微鏡觀察奈米銀對 S. areus 及 E. coli 之影響 ... 13
圖五、矽藻土含量對水蒸氣通透性的影響 ........................................... 15
圖六、聚合物–白土奈米複合材質的組合情形 ..................................... 18
圖七、有機黏土於聚合物中之 TEM 示意圖 ........................................ 20
圖八、乳酸之結構式 ............................................................................... 25
圖九、聚乳酸之結構式 ........................................................................... 25
圖十、聚乳酸之生成路徑 ....................................................................... 26
圖十一、聚乳酸酯隨著時間的分解程度 ............................................... 27
圖十二、幾丁質之結構式 ....................................................................... 33
圖十三、幾丁聚醣之結構式 ................................................................... 33
圖十四、幾丁聚醣膜片對 S. aureus 的抗菌效果 .................................. 36
圖十五、幾丁類物質創傷被覆材質 ....................................................... 40
圖十六、TCL 推膜器............................................................................... 42
圖十七、詴驗設計架構 ........................................................................... 44
圖十八、雷射光散射粒徑分析儀(DLS)分析流程 ........................... 46
圖十九、SEM 及 AFM 分析流程示意圖 ............................................... 49
圖二十、物性儀及所搭配使用之夾具 ................................................... 52
圖二十一、聚乳酸酯、幾丁聚醣及其複合膜之 DSC 曲線圖 ............. 53
圖二十二、JIS Z 2801 流程方法 ............................................................ 56


VI
圖二十三、水溶液中幾丁聚醣經微細化前之動態雷射光散射粒徑分
析圖譜.................................................................................59
圖二十四、水溶液中幾丁聚醣經高壓衝撞處理後 DLS 粒徑分析圖譜60
圖二十五、水溶液中幾丁聚醣靜置 1 小時後 DLS 粒徑分佈圖譜 ..... 61
圖二十六、添加 0.001% Tween-80 之幾丁聚醣靜置 1 小時後粒徑分佈
圖.........................................................................................63
圖二十七、添加 0.005% Tween-80 之幾丁聚醣幾丁聚醣靜置 1 小時粒
徑分佈圖 .............................................................................. 64
圖二十八、添加 0.01% Tween-80 之幾丁聚醣幾丁聚醣靜置 1 小時粒
徑分佈圖 .............................................................................. 65
圖二十九、幾丁聚醣在偏光顯微鏡下之結構 ....................................... 67
圖三十、偏光顯微鏡觀察之聚乳酸酯微結構 ....................................... 68
圖三十一、聚乳酸酯與幾丁聚醣以 1:1 的比例混合之結構圖示 ..... 69
圖三十二、聚乳酸酯與幾丁聚醣以 1:2 的比例混合之結構圖示 ..... 70
圖三十三、添加 10%幾丁聚醣於聚乳酸酯複合液之結構狀態 .......... 72
圖三十四、添加 5%幾丁聚醣於聚乳酸酯複合液之結構狀態 ............ 73
圖三十五、添加 1%幾丁聚醣於聚乳酸酯複合液之結構狀態 ............ 74
圖三十六、聚乳酸酯膜之結構狀態 ....................................................... 75
圖三十七、添加 0.1%幾丁聚醣之聚乳酸酯複合膜結構狀態 ............. 76
圖三十八、添加 0.5%幾丁聚醣之聚乳酸酯複合膜結構狀態 ............. 77
圖三十九、添加 1%幾丁聚醣之聚乳酸酯複合膜結構狀態 ................ 78
圖四十、複合膜結構之 SEM 觀察圖 ..................................................... 80
圖四十一、聚乳酸酯膜之原子力顯微鏡圖譜 ....................................... 82
圖四十二、PLA-nanochitosan(0.5%)奈米複合膜之原子力顯微鏡圖


VII
譜 ............................................................................................................... 83
圖四十三、PLA-nanochitosan(1%)奈米複合膜之原子力顯微鏡圖譜
................................................................................................................... 84
圖四十四、聚乳酸-幾丁聚醣奈米複合膜之紅外線光譜圖分析 ......... 86
圖四十五、添加不同濃度幾丁聚醣之複合膜玻璃轉換溫度變化 ....... 87
圖四十六、奈米充填物濃度對複合膜抗拉強度與延展性之相關性的
影響.....................................................................................93
圖四十七、聚乳酸酯複合膜對 Escherichia coli 抗菌性詴驗 ............. 100
圖四十八、聚乳酸酯複合膜對 Bacillus substilits 抗菌性詴驗 .......... 101
圖四十九、聚乳酸酯複合膜對 Staphylococcus aureus 抗菌性詴驗 .. 102
圖五十、幾丁聚醣經高壓衝撞前粒徑分析圖譜之詳細數據……….119
圖五十一、幾丁聚醣經高壓衝撞後粒徑分析圖譜之詳細數據…….120
圖五十二、奈米化幾丁聚醣經靜置 1 小時後粒徑分析圖譜之詳細數
據………………………………………………………...121
圖五十三、添加 0.001% Tween-80 之奈米化幾丁聚醣經靜置 1 小時後
粒徑分析圖譜之詳細數據……………………………...122
圖五十四、添加 0.005% Tween-80 之奈米化幾丁聚醣經靜置 1 小時後
粒徑分析圖譜之詳細數據……………………………...123
圖五十五、添加 0.01% Tween-80 之奈米化幾丁聚醣經靜置 1 小時後
粒徑分析圖譜之詳細數據……………………………...124




VIII
表目錄
頁次
表一、菌種培養條件 ............................................................................... 55
表二、不同粒徑大小對複合膜(0.5% 幾丁聚醣)抗拉強度之影響 89
表三、奈米複合膜之機械性質 ............................................................... 91
表四、填充物對奈米複合膜抗拉強度的影響 .................................... ...95
表五、填充物對奈米複合膜延展性的影響 ........................................... 96
表六、聚乳酸複合膜之通透性結果 ....................................................... 98



105
張碧姿。2005。奈米幾丁聚醣微粒對降血脂藥物包覆與釋放研究。國立
雲林科技大學化學工程系 碩士論文。雲林縣。
陳美惠。1996。幾丁聚醣的物化特性。食品工業月刊。31(10):1-6。
陳榮輝。2001。幾丁質、幾丁聚醣的生瓹製造、檢測與應用。National Science
Council Monthly 29(10):39-52。
川合知二。2002。圖解奈米科技。工業技術研究院 奈米科技研發中心。
新竹縣。
Aguilera JM. 2006. Food product engineering: building the right structure. J
Sci Food Agric 86: 1147-1155.
Aguilera JM. 2005. Why food microstrucure. J Food Eng 67: 3-11.
Alexandre M, Dubois P. 2000. Polymer–layered silicate nanocomposites:
preparation, properties and uses of a new class of materials. Mater Sci Eng
28: 1-63.
Ash BJ, Siegel RW, Schadler LS. 2004. Glass-transition temperature behavior
of alumina/PMMA nanocomposites. J Polym Sci B: Polym Phys 42:
4371-4383.
Auras RA, Singh SP, Singh JJ. 2005. Evaluation of oriented poly(lactide)
polymers vs. existing PET and oriented PS for fresh food service containers.
Packag Technol Sci 18: 207-216.
Auras R, Harte B, Selke S. 2004a. An overview of polylactides as packaging
materials. Macromol Biosci 4: 835-864. .
Auras R, Harte B, Selke S. 2004b. Effect of water on the oxygen barrier
properties of poly(ethylene terephthalate) and polylactide films. J Appl
Polym Sci 92: 1790-1803.
Avella M, De Vlieger JJ, Errico ME, Ficher S, Vacca P, Volpe MG. 2005.
Biodegradable starch/clay nanocomposite films for food packaging
applications. Food Chem 93: 467-474.
Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A. 2002. Preparation,
characterization and biodistribution of ultrafine chitosan nanoparticles. Int J

106
Pharm 243: 93-105.
Biagini G, Bertani A, Muzzarelli R, Damadei A, DiBenedetto G, Belligolli A,
Riccotti G, Zucchini C, Rizzoli C. 1991. Wound management with
N-carbxybutyl chitosan. Biomater 12(3): 281-286.
Boukha Z, Fitian L, Lópen-Haro M, Mora M, Ruiz JR, Jiménez-Sanchidrián,
Blanco G, Calvino JJ, Cifredo GA, Trasobares S, Bernal S. 2010. Influence
of the calcination temperature on the nano-structure properties, surface
basicity, and catalytic behavior of alumina-supported lanthana samples. J
Catal 272: 121-130.
Brody A, Bugusu B, Han JH, Sand CK, McHugh TH. 2008. Innovative food
packaging solutions. J Food Sci 73(8): R107-R116.
Brody A. 2007a. Nanocomposite technology in food packaging. Food Technol
61(10): 80-83.
Brody A. 2007b. Case studies on nanotechnologies for food packaging. Food
Technol 61(7): 102, 105-107.
Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon JM, Renard
C.M. 2009. Application of ATR-FTIR for a rapid and simultaneous
determination of sugars and organic acids in apricot fruit. Food Chem 115:
1133-1140.
Cabedo L, Gimenez E, Lagaron JM, Gavara R, Saura JJ. 2004. Development
of EVOH–kaolinite nanocomposites. Polym 45: 5233-5238.
Calvo P, Remunan-Lopez JL, Vila-Jato JL, Alonso MJ. 1997. Novel
hydrophilic chitosan and chitosan/polyethylene oxide nanoparticles as
protein carrier. J Appl Polym Sci 63: 125-132.
Cam D, Ikada Y. 1995. Degradation of high molecular weight poly(L-lactide)
in aljaline medium. Biomater 16(11): 833-843.
Catiker E. 2000. Degradation of PLA, PLGA homo- and copolymer in
presence of serum albumin: Aspectroscopic investigation. Polym Int 49(7):
728-734.
Carrascosa LG, Moreno M, Á lvarez M, Lechuga LM. 2006. Nanomechanical


107
biosensors: a new sensing tool. Trends Anal Chem 25(3): 196-206.
Chang JH, An YU, Cho D, Giannelis EP. 2003. Poly(lactic acid)
nanocomposites: comparison of their properties with montmorillonite and
synthetic mica (II). Polym 44: 3715-3720.
Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh N, Nagy J, Spevak W,
Stevens R. 1996. A “litmus test” for molecular recognition using artificial
membrane. Chem Biol 3: 113.
Chau CF, Wu SH, Yen GC. 2007. The development of regulations for food
nanotechnology. Trends Food Sci Technol 18: 269-280.
Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Attken R,
Watkins R. 2008. Applications and implications of nanotechnologies for the
food sector. Food Addi Contam 25(3): 241-258.
Chen YM, Chung TC, Wang LW, Chen KT, Li SY. 2002. Antibacterial
properties of chitosan in waterborne pathogen. J Environ Sci Health 37(7):
1379-1390.
Chien PJ, Sheu F, Huang WT, Su MS. 2007. Effect of molecular weight of
chitosans on their antioxidative activities in apple juice. Food Chem 102(4):
1192-1198.
Cho KH, Park JE, Osaka T, Park SG. 2005. The study of antimicrobial activity
and preservative effects of nanosilver ingredient. Electrochim Acta 51:
956-960.
Choi SK, Kim D. 2002. Drug-releasing behavior of MPEG-PLA block
copolymer micelles and solid particles controlled by component block
length. J Appl Polym Sci 83: 435-445.
Chu CC. 1985. Degradation phenomena of two linear aliphatic polyester
fibers used in medicine and surgery. Polym 26(4): 591-594.
Chung LY, Schmidt RJ, Hamlyn PF, Sagar BF, Andrews AM, Turner TD.
1994. Biocompatibility of potential wound management products: fungal
mycelia as a source of chitin/chitosan and their effect on the proliferation of
human F1000 fibroblasts in culture. J Biomed Mater Res 28(4): 463-469.


108
Chung Y, Su Y, Chen C, Jia G, Wang H, Wu JCG, Lin J. 2004. Relationship
between antibacterial activity of chitosan and surface characteristics of cell
wall. Acta Pharm Sin 25: 932–936.
Coma V, Martial-Gros A., Garreau S, Copinet A, Salin F, Deschamps A.
2002. Edible antimicrobial films based on chitosan matrix. J Food Sci 67:
1162–1169.
Cullum BM, Tuan VD. 2000. The development of optical nanosensors for
biological measurements. Trends Biotechnol 18(9): 388-393.
Darder M, Aranda P, Ruiz-Hitzky E. 2007. Bionanocomposites: a new
concept of ecological, bioinspired, and functional hybrid materials. Adv
Mater 19: 1309-1319.
Das D. 1998. Quantum confinement effect in nano-silicon thin flims. Solid
State Commun 108(12): 983-987.
Despond S, Espuche E, Domard A. 2001. Water sorption and permeation in
chitosan films: relation between gas permeability and relative humidity. J
Polym Sci 39(24): 3114-3127.
Deuchi K, Kananuchi O, Imasato Y, Kobayashi E. 1994. Decreasing effect of
chitosan on the apparent fat digestibility by rats fed on a high-fat diet.
Biosci Biotechnol Biochem 58: 1613-1616.
Ding C, Guo B, He H, Jia D, Hong H. 2005. Preparation and structure of
highly confined intercalated polystyrene / montmorillonite nanocomposite
via a two-step method. Eur Polym J 41: 1781-1786.
Du M, Guo B, Jia D. 2006. Thermal stability and flame retardant effects of
halloysite nanotubes on poly(propylene). Eur Polym J 42: 1362-1369.
Dumont MJ, Reyna–Valencia A, Emond JP, Bousmina M. 2007. Barrier
properties of polyethylene/organoclay nanocomposites. J Appl Polym Sci
103: 618-625.
Fang SW, Li CF, Shih DYC. 1994. Antifungal activity of chitosan and its
preservative effect on low-sugar candied kumquat. J Food Prot 57:
136-140.


109
Fernandez-Saiz P, Ocio MJ, Gavara R, Hernandez-Munoz P. 2006a.
Development and Characterization of gliadin-chitosan acetate blend films.
Proceedings of the 15th IAPRI World Conference on Packaging pp 53.
Fernandez-Saiz P, Ocio MJ, Lagaron JM. 2006b. Film forming and
biocideassessment of high molecular weight chitosan as determined by
combined ATR-FTIRspectroscopy and antimicrobial assays. Biopolym 83
(6): 577–583.
Fernandez-Saiz P, Lagaron JM, Hernandez-Muñoz P, Ocio MJ. 2008.
Characterization of antimicrobial properties on the growth of S. aureus of
novel renewable blends of gliadins and chitosan of interest in food
packaging and coating applications. Int J Food Microbiol 124: 13-20.
Foster S, Konrad M. 2003. Form self-organizing polymer to nano- and
biomaterials. J Mater Chem 13: 2671-2688.
Gavara R, Catala R, Hernandez-Munoz PM, Hernandez RJ. 1996. Evaluation
of permeability through permeation experiment: isostatic and quasiisostatic
method compared. Packag Technol Sci 9: 215-224.
Goddard JM, Hotchkiss JH. 2007. Polymer surface modification for the
attachment of bioactive compounds. Prog Polym Sci 32:698-725.
Gouin S. 2004. Microencapsulation: industrial appraisal of existing
technology and trends. Trends Food Sci Technol 15: 330-347.
Guilbert S, Cuq B, Gontard N. 1997. Recent innovation in edible and/or
biodegradable packaging materials. Food Addi Contam 14(6-7): 714-751.
Gupta AP, Kumar V. 2007. New merging trends in synthetic biodegradable
polymers – Polylactide: A critique. Eur Polym J 43(10): 4053-4074.
Hadwiger L, Kendra D, Fristensky B, Wagoner W. 1986. Chitosan both
activates genes in plants and inhibits RNA synthesis in fungi. Chitin Nature
Technol: 209-214.
Henlander I, Nurmiaho-Lassila E, Ahvenainen R, Rhoades J, Roller S. 2001.
Chitosan disrupts the barrier properties of the outer membrane of
gram-negative bacteria. Int J Food Microbiol 71: 235-244.


110
Hiramoto T, Majima H, Saitoh M. 2003. Quantum effects and single-electron
charging effects in nano-scale silicon MOSFETs at room temperature.
Mater Sci Eng B 101(1-3): 24-27.
Hirano S. 1996. Chitin biotechnology applications. Biotechnol Annu Rev 2:
237-258.
Hirano S, Yogo T, Sakamoto W, Yamada S, Nakamura T, Yamamoto T, Ukai
H. 2001. In situ processing of electroceramic fine particles / polymer
hybrids. J Eur Ceram Soc 21: 1479-1483.
Hoffman A, Lafosse A, Michaelson SH, Bertin M, Azria R. 2008. Nano size
effects in the high resolution electron energy loss spectra and excitation
function of hydrogenated diamond films. Surf Sci 602(18): 3026-3032.
Holm VK, Ndoni S, Risbo J. 2006. The stability of poly(lactic acid)
packaging films as influenced by humidity and temperature. J Food Sci
71(2): E40-E44.
Huang H, Yuan Q, Yang X. 2005a. Morphology study of gold-chitosan
nanocomposites. J Coll Int Sci 282: 26-31.
Huang R, Mendis E, Kim SK. 2005b. Factors affecting the free radical
scavenging behavior of chitosan sulfate. Int J Biol Macromol 36 (1-2):
120-127.
Ivan S, Branka SS. 2004. Silver nanoparticles as antimicrobial agent: a case
study on E. coli as a model for gram-negative bacteria. J Coll Int Sci 275:
177-182.
Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. 1997.
Bone formation by three-dimensional stromal osteoblast culture in
biodegradable polymer scaffolds. J Biomed Mater Res 36(1): 17-28.
Jamshidi K, Ikada Y. 1988. Thermal characterization of polylactides. Polym
29(12): 2229-2234.
Jang WY, Shin BY, Lee TJ, Narayan R. 2007. Thermal properties and
morphology of biodegradable PLA/starch compartilized blends. J Ind Eng
Chem 13(3): 457-464.


111
Jiang L, Zhang J, Wolcott MP. 2007. Comparison of polylactide/nano-sized
calcium carbonate and polylactide/montmorillonite composites: reinforcing
effects and toughening mechanisms. Polym 48: 7632-7644.
Jin T, Zhang H. 2008. Biodegradable polylactic acid polymer with nisin for
use in antimicrobial food packaging. J Food Sci 73: 127-134.
Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP. 2007.
Compostability of bioplastic packaging materials: an overview. Macromol
Biosci 7: 255-277.
Kang S, Pinault M, Pfefferle LD, Elimelech M. 2007. Single-walled carbon
nanotubes exhibit strong antimicrobial activities. Langmuir 23: 8670-8673.
Kim KW, Thomas RL. 2007. Antioxidative activity of chitosans with varying
molecular weights. Food Chem 101(1): 308-313.
Koide S, Shi J. 2007. Microbial and quality evaluation of green peppers
stored in biodegradable film packaging. Food Cont 18:1121-1125.
Komamrnei S. 1992. Nanocomposites. J Mater Chem 2: 1219-1230.
Kotsilkova R, Petkova V, Pelovski Y. 2001. Thermal analysis of
polymer–silicate nanocomposites. J Therm Anal Cal 64: 591-598.
Kozlowski M, Masirek R, Piorkowska E, Gazicki-Lipman M. 2007.
Biodegradable blend poly(L-lactide) and starch. J Appl Polym Sci 105:
269-277.
Kricheldorf HR. 2007. Synthesis and application of polylactide. Chemosphere
43: 49-54.
Kurita K, Sannan T, Iwakura Y. 1977. Studies on chitin, 4. Evidence for
formation of block and random copolymers of N-acetyl-D-glucosamine and
D-glucosamine by hetero- and homogeneous hydrolyses. Die
Makromolekulare Chem 178(12): 3197-3202.
Lan T. 2007. Nanocomposite materials for packaging applications. ANTEC
Annual Technical Conference, Cincinnati, OH, May 6-10.
Lange, J, Wyser Y. 2003. Recent innovation in barrier technologies for plastic
packaging – a review. Packag Technol Sci 16: 149-158.


112
Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E. 2005.
Improved packaged quality and safety. Part 2: Nanocomposites. Food Addi
Contam 22(10): 994-998.
Lehermeier HJ, Dorgan JR, Way JD. 2001. Gas permeation properties of
poly(lactic acid). J Membr Sci 190: 243-251.
Lei SG, Hoa SV, Ton-That MT. 2006. Effect of clay types on the processing
properties of polypropylene nanocomposites. Composites Sci Technol 66:
1274-1279.
Leser ME, Michel M, Watzke HJ. 2003. “Food goes nano” – new horizons for
food structure research. In Food Colloid, Biopolymer and Materials, eds. E
Dickson and T van Vliet. Royal Society of Chemistry, Cambridge, pp 3-13.
Li Y, Chen XG, Liu N, Liu CS, Liu CG, Meng XH, Yu LJ, Kenendy JF. 2007.
Physicochemical characterization and antibacterial property of chitosan
acetates. Carbohydr Polym 67: 227-232.
Liu H, Du Y, Wang X, Sun L. 2004. Chitosan kills bacteria through cell
membrane damage. Int J Food Microbiol 95: 147-155.
Liu Y, Chakrabartty S, Alocilja E. 2007. Fundamental building blocks for
molecular biowire based forwards error-correcting biosensors. Nanotechnol
18: 1-6.
Lucciarini JM, Ratto JA. 2002. Nanocomposites study of ethylene co–vinyl
alcohol and montmorillonite clay. Antec Proceedings p1-5.
Maeda M, Murakami H, Ohta H, Tajima M. 1992. Stimulation of IgM
production in human-human hybridoma HB4C5 cells by chitosan. Biosci
Biotechnol Biochem 56(3): 427-431.
Matsugo S, Mizuie M, Matsugo M, Ohwa R, Kitano H, Konishi T. 1998.
Synthesis and antioxidant activity of water-soluble chitosan derivatives.
IUBMB Life 44(5): 939-948.
Meason, Mariah N. 2001. Predicting controlled-release behavior of
degradable PLA-b-PEG-b-PLA hydrogels. Macromol 34(13): 4630-4635.
Mitra A, Bhaumik A, Nandi M, Mondal J, Roy BK. 2009. A convenient


113
sol–gel route for the synthesis of salicylate–titania nanocomposites having
visible absorption and blue luminescence. J Solid State Chem
182:1200-1205.
Moller H, Grelier S, Pardon P, Coma, V. 2004. Antimicrobial and
physicochemical properties of chitosan-HPMC-based films. J Agric Food
Chem 52:6585–6591.
Moraru CI, Panchapakesan CP, Huang QR, Takhistov P, Liu S, Kokini JL.
2003. Nanotechnology: a new frontier in food science. Food Technol 57:
24-29.
Muzzarelli RAA, Rocchetti R. 1985. Determination of the degree of
acetylation of chitosans by first derivative ultraviolet spectrophotometry.
Carbohydr Polym 5(6): 461-472.
Muzzarelli RAA. 1996. Chitosan-based dietary foods. Carbohydr Polym 29:
309-316.
Nakamura T, Hitomi S. 1989. Bioabsorption of polylatide with different
molecular properties. J Biomed Mater Res 23(10): 1115-1130.
Nie JH, Li HH, Feng ZK, He HH. 2003. The effect of nano-SiO2 on the
magnetic properties of the low power loss manganese–zinc ferrites. J Magn
Magn Mater 265: 172-175.
Okrasa L, Boiteux G, Ulanski G, Seytre G. 2001. Molecular relaxtion in
anisotropic composite base on (hydroxypropyl) cellulose and acrylic
polymer. Polym 42(8): 3817-3825.
Ormord DJ, Holmes CC, Miller TE. 1998. Dietary chitosan inhibits
hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient
mouse model of atherosclerosis. Atheroscler 138(2): 329-334.
Patel PD. 2002. Biosensors for measurement of analytes implicated in food
safety: a review. Trends Anal Chem 21(2): 96-115.
Paul DR, Robeson LM. 2008. Polymer nanotechnology: nanocomposites.
Polym 49: 3187-3204.
Pluta M, Paul MA, Alexandre M, Dubois P. 2006a. Plasticized


114
polylactide/clay nanocomposites. I. The role of filler content and its surface
organo-modification on the physico-chemical properties. J Polym Sci B:
Polym Phys 44: 299- 311.
Pluta M, Paul MA, Alexandre M, Dubois P. 2006b. Plasticized
polylactide/clay nanocomposites. II. The effect of aging on structure and
properties in relation tot he filler content and the nature of tis
organo-modification. J Polym Sci B: Polym Phys 44: 312- .
Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y. 2006. Water-solubility of chitosan
and its antimicrobial activity. Carbohydr Polym. 63 : 367–374.
Ranade A, D’Souza NA, Gnade B, Dharia A. 2003. Nylon–6 and
montmorillonite–layered silicates (MLS) nanocomposites. J Plastic Film
Sheeting 19: 271-285.
Ray SS, Quek SY, Easteal A, Chen XD. 2006. The potential use of
polymer–clay nanocomposites in food packaging. Int J Food Eng 4(2):
1-11.
Ray SS, Okamoto M. 2003. Biodegradable polylactide and its
nanocomposites: opening a new dimension for plastics and composites.
Macromol Rapid Comm 24: 815-840.
Ray SS, Yamada K, Okamoto M, Ueda K. 2003a. Control of biodegradability
of polylactide via nanocomposite technology. Macromol Mater Eng 288:
203-208.
Ray SS, Yamada K, Okamoto M, Ueda K. 2003b. New polylactide-layered
silicate nanocomposites. 2. Concurrent improvement of material properties,
biodegradability and melt rheology. Polym 44: 857-866.
Rege PR, Garmise RJ, Block LH. 2003. Spray-dried chitosans: Part I:
preparation and characterization. Int J Pharm 252(1-2): 41-51.
Rhim JW, Hong SI, Park HM, Ng PKW. 2006. Preparation and
characterization of chitosan-based nanocomposite film with antimicrobial
activity. J Agric Food Chem 54: 5814-5822.
Rhim JW, Hong SI, Ha CS. 2009. Tensile, water vapor barrier and


115
antimicrobial properties of PLA/nanoclay composite films. Food Sci
Technol 42:612-617.
Rinaudo M. 2006. Chitin and chitosan: Properties and application. Prog
Polym Sci 31(7): 603-632.
Roco MC. 2003. Nanotechnology: convergence with modern biology and
medicine. Curr Opin Biotechnol 14: 337-346.
Rotzinger B. 2006. Talc-filled PP: A new concept to maintain long term heat
stability. Polym Degrad Stab 91(12): 2884-2887.
Rodriguez E, McDaniel R. 2001. Combinatorial biosynthesis of antimicrobial
and other natural products. Curr Opin Microbiol 4(5): 526-534.
Sabnis S, Block LH. 2000. Chitosan as an enabling excipient for drug
delivery system I.Molecular modification. J. Membrane sci 142: 13-26.
Saiki I, Murata J, Naakjima M, Tokura S, Azuma I. 1990. Inhibition by
sulfated chitin derivatives invasion through extracellular matrix and
enzymatic degradation by metastatic melanoma cells. Cancer Res 50:
3631-3637.
Samyn F, Bourbigot S, Jama C, Bellayer S, Nazare S, Hull R, Castrovinci A,
Fina A, Camino G. 2008. Crossed characterization of polymer-layered
silicate (PLS) nanocomposite morphology: TEM, X-ray diffraction,
rheology and solid-state nuclear magnetic resonance measurement. Euro
Polym J 44: 1642-1653.
Sanguansri P, Augustin MA. 2006. Nanoscale materials development – a food
industry perspective. Trends Food Sci Technol 17: 547-556.
Sasada K, Hatano N. 2005. Quantum interface effect of resonant transport in
nano-scale systems. Physica E Low Dimens Syst Nanostruct 29(3-4):
609-613.
Schindler A, Pitt CG. 1982. Biodegradable elastomeric polyesters. Am Chem
Soc 23(2): 111-112.
Shahidi F, Abuzaytoun AR. 2005. Chitin, chitosan and coproduce: chemistry,
production, applications, and health effects. Adv Food Nutr Res 49:


116
94–135.
Shahidi F, Janak KVA, Jeon YJ. 1999. Food application of chitin and
chitosan. Trends Food Sci Technol 10(2): 37-51.
Shibata Y, Foster LA, Metager WJ, Myrvik QN. 1997. Alveolar macrophage
proming by intravenous administration of chitin particles, polymers of
N-acetyl-D-glucosamine, in mice. Infect Immun 65(5): 1734-1741.
Shikanov A, Kumar D, Domb AJ. 2005. Biodegradable polymers: an update.
Isr J Chem 45: 393-399.
Siegrist M, Cousin ME, Kastenholz H, Wiek A. 2007. Public acceptance of
nanotechnology foods and food packaging: The influence of affect and trust.
Appetite 49: 459-466.
Simpson BK, Gagne N, Ashie IN, Nornnzi E. 1997. Utilization of chitosan for
preservation of raw shrimp. Food Biotechnol 6(3): 257-272.
Singh MK, Singh PP, Titus E, Misra DS, LeNormand F. 2002. High density
of multiwalled carbon nanotubes observed on nickel electroplated copper
substrates by microwave plasma chemical vapor deposition. Chem Phys
Lett 354: 331-336.
Sorrentino A, Gorrasi G, Vittoria V. 2007. Potential perspectives of
bio-nanocomposites for food packaging applications. Trends Food Sci
Technol 18: 84-95.
Sozer N, Kokini JL, 2008, Nanotechnology and its applications in the food
sector. Trends Biotechnol 27:82-89.
Su XL, Li Y. 2004. Quantum dot biolabeling coupled with immunomagnetic
separation for detection of Escherichia coli O157:H7. Anal Chem 76:
4806-4810.
Suyatma NE, Copinet A, Tighzert L, Coma V. 2004. Mechanical and barrier
properties of biodegradable films made from chitosan and poly (lactic acid)
blends. J Polym Environ 12(1): 1-6.
Tarver T. 2006. Food nanotechnology. Food Technol 60(11): 22-26.
Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrel R, D’Souza NA,


117
Ratto JA. 2005. Influence of montmorillonite layered silicate on plasticized
poly(L-lactide) blown films. Polym 46: 11716-11727.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top