|
1. V. I. Lopushan, G. F. Kuznetsov, R. N. Pletnev, and D. G. Kleshev, “Kinetics of phase transitions of gibbsite during heat treatment in air and in water vapor,” Refract. Ind. Ceram., 48 [5] 378-382 (2007). 2. X. Y. Chen, Z. J. Zhang, X. L. Li, and S. W. Lee, “Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals,” Solid State Commun., 145 368-373 (2008). 3. A.Violante and P. M. Huang, “Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides,” Clays Clay Miner., 33 181-192 (1985). 4. M. K. B. Day and V.J. Hill, “The thermal transformations of the aluminas and their hydrates,” J. Phys. Chem., 57 946-950 (1953). 5. H. Ginsberg and M. Koester, “Note on the aluminum oxide monohydrate,” Z. Anorg. Allgem. Chem., 271 41-48 (1952). 6. H. C. Stumpf, A. S. Russell, J. W. Newsome, and C.M. Tucker, “Thermal transformations of aluminas and alumina hydrates,” Ind. Eng. Chem., 42 1398-1403 (1950). 7. S. Shigeyuki and R. Rustum, “Hydrothermal synthesis of fine oxide powders,” Bull. Mater. Sci., 23 [6] 453-460 (2000). 8. W. L. Suchanek and R. E. Riman, “Hydrothermal synthesis of advanced ceramic powders,” Adv. Sci. Tech., 45 184-193 (2006). 9. T. Sugimoto, Monodispersed Particles, Elsevier, Amsterdam, 2001. 10. K. Wefers and G. M. Bell, “Oxide and hydroxides of alumina,” Technical Paper No.19, Alcoa Research Laboratories (1972). 11. 黃啟祥、林江財,氧化鋁,陶瓷技術手冊(下),683-685,中華民國產業科技發展協進會與中華民國粉末冶金協會出版。民國83年7月。 12. B. C. Lippens and J. J. Steggerda, “Active alumina” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171 (1970). 13. G. W. Brindley and J. O. Choe, “The reaction series, Gibbsite→ Chi alumina→ Kappa alumina→ Corundum,” Am. Mineral., 46 771-785 (1961). 14. H. Saalfeld, “The dehydration of gibbsite and the structure of a tetragonal γ-Al2O3,” Clay Min. Bull., 3 249-257 (1958). 15. F. J. Ewing, “The crystal structure of lepidocrocite,” J. Chem. Phys, 3 420-454 (1935). 16. R. Tettenhorst and D. A. Hofmann, “Crystal chemistry of boehmite,” Clays and Clay Miner., 28 [5] 373-380 (1980). 17. S. J. Wilson, “The development of porous microstructures during the dehydration of boehmite,” Mineralogical Magazine, 43 301-306 (1979). 18. H. Souza Santos, P. K. Kiyohara, and P. Souza Santos, “Thermal transformation of synthetic euhedral and fibrillar crystals of boehmite into Aluminas,” Materials Res. Bull., 31 [7] 799-807 (1996). 19. W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Ceram. Bull., 67 [10] 1673-1678 (1988). 20. 苗鴻雁、董敏、丁常勝,“水熱法製備納米陶瓷粉體技術,”中國陶瓷,40 [4] 25-28 (2004)。 21. T. Sugimoto, “Preparation of mono dispered colloidal particles,” Adv. Colloid Interface Sci., 28 65-108 (1987).
22. J. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lericka, and R. E. Riman, “Kinetics and mechanisms of hydrothermal synethesis of barium titanate,” J. Am. Ceram. Soc., 79 2929-2939 (1996). 23. J. H. Lee, C. W. Won, and T. S. Kim, “Characteristics of BaTiO3 powders synthesized by hydrothermal process,” J. Mater. Sci., 35 4271-4274 (2000). 24. Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, and W. Zhong, “Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal condition,” Mater. Lett., 56 601-605 (2002). 25. K. Yanagisawa, Y. Zhu, A. Onda, and K. Kajiyoshi, “Hydrothermal synthesis of mono-dispersed quartz powders,” J. Mater. Sci., 39 2931-2934 (2004). 26. F. Shiba, M. Yokoyama, Y. Mita, T. Yamakawa, and Y. Okawa, “Hydrothermal synthesis of monodisperse WO3•H2O square platelet particles,” Mater. Lett., 61 1778-1780 (2007). 27. J. Yan, S. Mo, J. Nie, W. Chen, X. Shen, J. Hu, G. Hao, and H. Tong, “Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid,” Colloid Surf. A-Physicochem. Eng. Asp., 340 109-114 (2009). 28. A. W. Laubengayer and R. S. Weisz, “A hydrothermal study of equilibria in the system alumina-water,” J. Am. Chem. Soc., 65 [2] 247-250 (1943). 29. S. K. Mehta and A. Kalsotra, “Kinetices and hydrothermal transformation of gibbsite,” J. Therm. Anal., 367 267-275 (1991). 30. P. A. Buining, C. Pathmamanoharan, M. Bosboom, J. B H. Jansen, and H. N. W. Lekkerkerker, “Effect of hydrothermal conditions on the morphology of colloidal boehmite particles: implications for fibril formation and monodispersity,” J. Am. Ceram. Soc., 73 [8] 2385-90 (1990). 31. X. Bokhimi, J. S. Valente, and F. Pedraza, “Crystallization of sol-gel boehmite via hydrothermal annealing,” J. Solid State Chem., 166 182-190 (2002). 32. K. Yanagisawa, D. Gushi, A. Onda, and K. Kajiyoshi, “Hydrothermal synthesis of boehmite plate crystals,” J. Ceram. Soc. Jpn., 155 [12] 894-897 (2007). 33. N. Lepot, M.K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, D. Franco, and J. Mullens, “Synthesis of platelet-shaped boehmite and γ-alumina nanoparticles via an aqueous route,” Ceram. Int., 34 1971-1974 (2008). 34. G. Yamaguchi and K. Sakamoto, “Hydrothermal reaction of aluminumtrihydroxides,” Bull. Chem. Soc. Jpn., 32 696-699 (1959). 35. A. V. Tolchev, V. I. Lopushan, and D. G. Kleshchev, “Chemical transfomations of γ-Al(OH)3 during closed-system heat treatment,” Inorg. Mater., 37 [12] 1274-1277 (2001). 36. T. Tsuchida, “Hydrothermal synthesis of submicrometer crystals of boehmite,” J. Eur. Ceram. Soc., 20 1759-1764 (2000). 37. M. Inoue, K. Kitamura, H. Tanina, H. Nakayama, and T. Inui, “Alcohothermal treatments of gibbsite : mechanisms for the Formation of Boehmite,” Clays Clay Miner., 37 [1] 71-80 (1989). 38. C. H. Bamford and C. F. H. Tipper, Reactions in the solid state, Comprehensive Chemical Kinetics, Vol.22, Else. Sci. Pub. Co., New York, 1980. 39. R. Miyawaki, S. Tomura, M. Okazaki, S. Satokawa, and K. Sugiyama, “Grinding of the the starting material on hydrothermal synthesis of kaolinite,” Clay Sci., 9 199-217 (1995). 40. T. Mashiko and T. Sakamoto, “Effect of grinding on the hydrothermal transformation of sepiolite,” Nendo Kagaku, 42 [1] 6-14 (2002). 41. A. Ahniyaz, T. Fujiwara, S. W. Song, and M. Yoshimura, “Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling,” Solid State Ionics, 151 419-423 (2002). 42. B. A. Wills, Mineral Processing Technology:An Introduction to The Practical Aspects of Ore Treatment and Mineral Recovery, Oxford, New York, 1979. 43. H. K. Choi and W. S. Choi, “Ultra-fine Grinding Mechanism of Inorganic Powders in a Stirred Ball Mill - The Effect of Grinding Aids,” Korean J. Chem. Eng., 20 [3] 554-559 (2003).
|