跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁詠蓁
研究生(外文):Yung-Chen Liang
論文名稱:二氧化鈦/石墨烯光觸媒複合材料 之特性及應用
論文名稱(外文):Applications and property of TiO2/Graphene Photocatalyst composites
指導教授:郭貹隆高肇郎
指導教授(外文):Sheng- Lung KuoChao-lang Kao
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:175
中文關鍵詞:光催化石墨烯二氧化鈦
外文關鍵詞:PhotocatalyticGrapheneTiO2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:967
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
光觸媒材料通常為二氧化鈦,主要是因為二氧化鈦擁有較高光催
化活性。本文探討4 種不同種類的石墨烯(分別以GOA、GOB、GH1
與GH2 表示),並以水熱/煅燒與水熱法製備不同比例石墨烯改質二氧
化鈦光觸媒複合材料(以TxYC 表示,x:重量百分比,Y:石墨烯種類,
C:煅燒)。光觸媒複合材料的物理性質可由場發射掃描式電子顯微鏡
(FE-SEM)、X-ray 繞射光譜圖(XRD)、拉曼光譜儀(Raman)、紫外可見
光漫反射光譜(UV-vis DRS)、傅立葉紅外線光譜儀(FTIR)與光催化試
驗檢測分析。結果顯示,UV-vis DRS 分析得知所有石墨烯的加入皆使
得TiO2 能隙變窄,經由計算可得知能隙從3.08 eV 降低至2.50 eV。從
XRD與Raman 光譜晶相分析,發現石墨烯的添加並未使晶相有所改變。
於FTIR 官能基分析中,可證明石墨烯與TiO2 之間具有化學鍵結。光
催化試驗中,在可見光催化下降解亞甲基藍可發現各種石墨烯改質光
觸媒複合材料中以TxGOA 與TxGH1 有較佳的光催化效果,而在紫外
光催化下降解亞甲基藍(MB)可發現T4GOA 只需30 分鐘即可達到
100 %之降解。
The photocatalyst materials are usually TiO2 due to its high photocatalytic performance. This article explores the TiO2 photocatalyst modified with four different graphene modified by hydrothermal/ calcining and hydrothermal method, and various mass ratio of the graphene. (Photocatalyst composites were label as TxYC, x: weight percent, Y: graphene species, C: Calcining). Photocatalyst composites were characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction(XRD), Raman spectroscopy, UV-vis diffuse reflectance spectra(UV-vis DRS), Fourier Transform infrared spectroscopy (FTIR) and photoactivity tests. The absorption spectra of the samples are shown that the narrowing of the band gap of TiO2 occurred with graphene introduction. The band gap of TiO2 is 3.08 eV, whereas the band gap of the photocatalyst composite has been slightly reduced to 2.50 eV. XRD and Raman analysis were suggested that addition of graphene cannot change crystalline structure of TiO2(Degussa, P25). FTIR spectra show that the chemical bonding between the graphene and TiO2. In photocatalytic tests, the visible light photocatalytic activity of TxGOA and TxGH1 composite are enhanced greatly on decomposition of methylene blue (MB).The photocatalytic activities of T4GOA samples are superior to that of TiO2, the methylene blue decomposition efficiency reached 100% only 30 min under UV light.
中文摘要 i
Abstract ii
誌謝 iii
圖目錄 viii
表目錄 xvi
第一章 緒論 1
1-1 研究背景 1
1-2 研究內容 3
第二章 基礎理論與文獻回顧 4
2-1 奈米材料(Nanomaterials) 4
2-2 光觸媒(photocatalyst) 8
2-2-1 二氧化鈦(TiO2)晶相結構與特性 12
2-2-2 二氧化鈦(TiO2)的應用 17
2-2-3 二氧化鈦(TiO2)奈米粒子之分散技術 22
2-2-4 二氧化鈦(TiO2)之修飾 24
2-3 石墨烯(Graphene) 26
2-3-1 石墨烯的結構 26
2-3-2 石墨烯的性質 29
2-3-3 石墨烯的製備方法 30
2-3-4 石墨烯的分散 34
2-3-5 石墨烯的應用 37
2-3-6 光觸媒合成方法 39
2-4 光催化機制(Photocatalytic Mechanism) 43
第三章 實驗藥品、設備與方法 47
3-1 實驗藥品 47
3-2 實驗設備 49
3-2-1 高壓釜反應器(Autoclave reactor) 49
3-2-2 可程式高溫爐(Program Temperature Controller) 50
3-2-3 超音波震盪機 51
3-2-4 離心機 52
3-2-5 高級氧化實驗裝置 53
3-2-6 其他小型設備 54
3-3 分析儀器 55
3-3-1 X-ray粉末繞射儀(X-ray powder diffractometer) 55
3-3-2 雷射共軛顯微拉曼光譜儀(Raman Spectroscopy) 56
3-3-3 場發射掃描式電子顯微鏡(FE-SEM) 57
3-3-4 穿透式電子顯微鏡(TEM) 58
3-3-5 紫外可見光光譜儀(UV-Vis Spectrophotometer) 59
3-3-6 紫外可見光光譜儀(UV-Vis Spectrophotometer) 60
3-3-7 傅立葉紅外線光譜儀(FTIR) 61
3-4 實驗方法 62
3-4-1 二氧化鈦/石墨烯光觸媒複合材料製備 62
3-4-2 光催化降解效率試驗 64
第四章 結果與討論 65
4-1 各種石墨烯之特性鑑定 65
4-1-1 材料表面型態與結構分析 65
4-1-2 晶相結構鑑定 70
4-1-3 傅立葉紅外線光譜儀(FTIR)官能基鑑定 76
4-1-4 紫外-可見光漫反射光譜圖(UV-vis DRS)分析 77
4-2 光觸媒複合材料特性分析 82
4-2-1 光觸媒複合材料表面型態與結構分析 82
4-2-2 光觸媒複合材料晶相結構鑑定 87
4-2-3 光觸媒複合材料官能基鑑定 112
4-2-4 光觸媒複合材料漫反射光譜分析 118
4-3光催化試驗檢測 128
4-3-1 紫外光催化試驗 128
4-3-2 可見光催化試驗 135
4-4反應動力學分析 142
4-4-1 反應動力分析(紫外光) 142
4-4-2反應動力分析(可見光) 150
第五章 結論與建議 157
5-1結論 157
5-2建議 159
參考文獻 160
附錄 170
附錄Ⅰ JCPDS card (XRD Jade 6.5) 170
附錄Ⅱ 光催化實驗數據 172

1.中文部分
(1)圖書
馬振基(2004)奈米材料科技原理與應用,全華科技圖書股份有限公司。
張立德與牟季美(2002)奈米材料和奈米結構,滄海書局。
羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民(2003)奈米科技導論,全華科技圖書股份有限公司。
高濂、鄭珊、張青紅(2004)奈米光觸媒,五南圖書出版股份有限公司。
何親賢(1973)半導體物理,中央圖書。
咸才軍(2004)奈米建材,五南圖書出版股份有限公司。
陳富亮(2003)最新奈米光觸媒應用技術,普林斯頓國際。
材料世界網(2011)新碳材時代-從奈米碳管到石墨烯,工業材料雜誌291期。
呂宗析(2003)奈米科技與光觸媒,商周出版。
(2)期刊論文
張琮祐(2008)以UV/TiO2光還原程序處理含六價鉻廢水之反應行為研究,碩士論文,大葉大學。
彭鈜堣(2011)已碳化矽熱裂解法與化學氣相沉積法製備石墨烯的製程與特性研究,碩士論文,國立中山大學物理研究所。
張仕正(2001)在二氧化鈦上進行Salicylic acid可見光光催化反應的研究,碩士論文,國立中央大學。
韋峻文(2001)石墨烯與氧化石墨烯的製備與鑑定,碩士論文,國立台灣師範大學化學系
(3)網路資源
MEGA石墨股份有限公司全球石墨烯市場綜合報告
http://www.megagraphite.com/graphene
(4)其他
林有銘(2006),無所不在的環境清潔工:奈米光觸媒,科學發展。呂宗昕、吳偉宏(2004),奈米科技與二氧化鈦光觸媒,科學發展。
魏子棟、殷菲、譚君,侯萬國(2001),化學通報。
劉暢、暴寧鐘、楊祝紅、陸小華(2001),催化學報。
洪偉修(2009)世界上最薄的材料-石墨烯,康熹化學報報。
胡耀娟,金娟,蔡稱心(2010)石墨烯的製備、官能化及在化學中的應用,物理化學學報。
黃毅,陳永勝(2009)石墨烯的官能化及其相關應用,中國科學雜誌。
2.英文部分
(1)book
Finklea,H.O.(1988).“Semiconductor Electrode.”Elsevier Press, New York.
Stumm, W.(1992). “Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems”, A Wiley interscience publication
William, D., Callister,J.(2003).“Materials Science and Engineering an Introduction.”John Wiley and Sons, Inc. 6th edition, Hoboken.
Woolfrey,J.L., Bartlett, J.R., Klein L.C., Pope, EJA., Sakka, S. J. Woolfrey, L.(1988).“Sol-gel processing of advanced materials”, The American Ceramic Society.
(2)Journal Articles
Ahuja, S., Kutty, T.R.N. (1996) “Nanoparticles of SrTiO3 prepared by gel to crystallite and their photocatalytic activity in the mineralization of phenol.” Journal of Photochemistry and Photobiology A: Chemistry, vol.97, pp.99-107.
Almquist, C.B., Biswas, P.(2002).“Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity.” Journal of Catalysis, vol.212, pp.145-156.
Anpo, M., Shima, T., Kodam, S.(1987) “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates.” Journal of Physical Chemistr, vol.91, pp.4305-4310.

Arslan,I., Balcioglu,I., Tuhkanen,T., Bahnemann, D.(2000) “H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A Treatment for Reactive Dye Wastewater.” Journal of Environmental Engineering, vol.126, pp.903-911.

Astarita, T., Cardone,G., Carlomagno, G.M., (2006).“Infrared thermography: an optical method in heat transfer and fluid flow visualization.”Optic and Lasers Engineering, vol.44, pp.261-281.

Bonanni, A., Loo, A. H.(2012). “Graphene for impedimetric biosensing.” TrAc Trends in Analytical Chemistry, vol.37, pp.12-21.

Bouquin,O. Blanchard,N. Colombian, Ph.(1987).“High tech ceramics.” Amsterdam: Elsevier, p.717.

Brodie, B. C.(1959).“On the Atomic Weight of Graphite.” Philosophical Transactions Royal Society, vol.149, p.249.
Cao,L., Spiess, F. J., Huang, A., Suib, S. L.(1999). “Heterogeneous Photocatalytic Oxidation of 1-Butene on SnO2 and TiO2 Film.” Journal of Physical Chemistry B, vol.103, pp.2912-2917.

Castro, A., Guinea, F., Peres, N. M.(2006).“Drawing conclusions from graphene.” Physics World, vol.19, pp.33-37.
Childs, L.P., Ollis, D.F.(1980) “Is photocatalysis catalytic.” Journal of Catalysis, vol.66, pp.383-390.
Dawson,W.J.(1988).“Hydrothermal Synthesis of Advanced Ceramic Powder.”, American Ceram Society Bulletin, vol.67, pp. 1673-1678.
Dikin,D., Stankovich,S., Zimney, E. J., Piner,R . D., Dommett, G. H. B., Evmenenko, G.(2007) “Preparation and characterization of graphene oxide paper.” Nature, vol.448, pp.457-460.


Fan, X.J., You, J.M., Tan, G.Z., Yu, X.D., Jiao, T.Q.(1998) “Progress in Microwave-Organ ic Reaction Enhancement Chemistry,” Progress in Chemistry, vol.10, pp.285-295.
Feng, H., Zhang, M.H., Yu, L. E.(2012) “ Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2.”Applied Catalysis A: General, vol.413-414, pp.238- 244. 
Ferrari,A.C., Meyer,J.C., Scardaci,V., Casiraghi, C., Lazzeri,M., Mauri,F., Piscanec,S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.,(2006).“Raman Spectrum of Graphene and Graphene Layers.” Physical Review Letters, vol.97, pp.187401-1-187401-4.

Forgacs,E., Cserháti, T. Oros, G.(2004).“Removal of synthetic dyes from wastewaters: A review. ” Environment International, vol.30, pp.953-971.

Frank,S.N., Bard, A.J.(1977).“Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, Journal Physical Chemistry Society, vol.81, pp.1484-1488.
Fujishima, A., Honda, K.(1972). “Electrochemical photolysis of water at a semiconductor electrode.” Nature, vol.238, pp. 37-38.
Fujishima, A., Zhang, X., Dryk, A. T.(2008). “TiO2 photocatalysis and related surface phenomena.” Surface Science Reports, vol. 63, pp.515-582.

Goswami,D.Y.(1997). “A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes.” Journal of Solar Energy Engineering, vol.119, pp.101-107.

Grätzel, M.(2001).“Photoelectrochemical cells” Nature, vol.414, pp. 338-344

Habibi,M.H., Mojtaba, N.E.(2007).“Preparation, characterization and photocatalytic activity of a novel nanostructure composite film derived from nanopowder TiO2 and sol-gel process using organic dispersant.” Dyes and Pigments, vol.75, pp.714-722.

Hayashi, S., Kon, R., Ichiyama, Y.(1988) “Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles.”Physical Review Letters,vol.60, pp.1085-1088.

He, H., Klinowski, J.,Forster, M., Lerf,A.(1998) “A new structural model for graphite oxide.” Chemical Physics Letters, vol.287, pp.53–56.

Hench, L.L., West, J.K.(1990).“The sol-gel process.”Chemical Reviews, vol.90, pp.33-72.

Henglein,A.(1989).“Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles.” Chemical Reviews, vol.89, pp.1861-1873.

Hideaki,Y., Daiki, A.(2009).“Raman spectroscopic study of the framework structure of amorphous mesoporous titania”, Microporous and Mesoporous Materials, vol.119, pp. 267-275.

Hoffman, A. J., Carraway, E. R., Hoffmann, M. R.(1994). “Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Collolds.”Environmental Science Technology, vol.28, pp.776-785.
Hummers, W. S., William, J.(1958) ” Preparation of graphitic oxide,” Journal of the American Chemical Society, vol.80, p.1339

Hwang,D. W., Kim, J. T., Park, J., Lee, J. S.(2002). “Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting.” Catalysis Letters, vol.80, pp.53-57.

Ismach, A., Druzgalski, C., Penwell, S., Schwartzberg, A., Zheng, M., Javey, A., Bokor, J., Zhang, Y.(2010). “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces.” Nano Letters, vol.10, pp.1542-1548.

Ismail, A. A.(2012).“Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties.” Microporous and Mesoporous Materials, vol.149, pp.69–75.
Ito,J.,Nakamura, J., Natori, A.(2008).“Semiconducting nature of the oxygen-adsorbed graphene sheet.” Journal of Applied Physics, vol.103, pp.113712-1-113712-5.

Kavitha, R., Gomathi, D. L.(2014) “Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis” Journal of Environmental Chemical Engineering, vol 2, pp.857-867.

Klintenberg, M., Lebegue, S., Ortiz, C., Sanyal, B., Fransson, J.,Eriksson, O.(2009).“Evolving properties of two-dimensional materials: from graphene to graphite.”Journal of Physics: Condensed Matter, vol.21, pp.335502-1-335502-7.

Li, F.B.(2002)“The enhancement of photodegradation efficiency using Pt-TiO2 catalyst.”Chemosphere, vol.48 , p.1103.

Li, X. L., Wang, H. L., Robinson, J. T., Sanchez, H., Diankov, G., Dai, H. J.(2009).“Simultaneous nitrogen doping and reduction of graphene oxide.”Journal of the American Chemical Society, vol.131, pp.15939-15944.

Liu, B., Torimoto,T., Matsumoto,H., Yoneyama, H.(1997) “ Effect of solvent on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices.” Journal of Photochemistry and Photobiology A:Chemistry, vol.108, pp.187-192

Liu,S.(2013).“Graphene oxide and graphene based catalysts in photochemical ractions”, Curtin, pp. 2-3.

Livage,J., Beteille, F. Roux, C., Chatry,M., Davidson,P.(1998). “Sol-Gel synthesis of oxide materials.” Acta Materialia, vol. 46, p.743.

Mackenzie,J.D., Hench, L.L., Urlich, D.R.(1986).“Science of ceramic chemical processing.”, Wiley, p.113.

Marques, A. P. A., de Melo, D. M. A., Longo, E., Paskocimas, C. A., Pizani, P. S.Leite, E. R. (2005) “Photoluminescence properties of BaMoO4 amorphous thin films.” Journal of Solid State Chemistry, vol.178, Issue 7, pp.2346-2353.

Marques, A. P. D., de Melo, D. M. A., Paskocimas, C. A., Pizani, P. S., Joya, M. R., Leite, E. R. Longo, E. (2006) “Photoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM).” Journal of Solid State Chemistry, vol.179, issue 3, pp.671-678.

Nair,R. R. Blake, P. Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber,T., Peres, N. M. R. Geim, A. K. (2008).“Fine Structure Constant Defines Visual Transparency of Graphene.” Science, vol.320, p.1308.

Navio,J. A., Colvn, G., Herman, J. M.(1997) “ Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2.” Journal of Photochemistry and Photobiology A:chemistry, vol.108, pp.197-185.

Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim,A. K.(2009). “The electronic properties of graphene.” Review of Modern. Physics, vol.81, pp.109-162.

Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon M. A., Haddon, R. C.(2006).“Solution properties of graphite and graphene,” Journal of the American Chemical Society, vol.128, pp.7720-7721.

Novoselov, K.S., Fal′ko, V. I. Colombo, L., Gellert, P. R., Schwab, M. G.,Kim, K.(2012).“A roadmap for graphene.”Nature, vol.490, pp.192–200.

Novoselov,K. S., Geim,A. K., Morozov,S. V., Jiang, D. Zhang,Y., Dubonos,S. V., Grigorieva I. V., Firsov A. A.(2004). “Electric Field Effect in Atomically Thin Carbon Films.” Science, vol.22, pp.666-669.

Okamoto,K., Yasunori,Y., Hirok,T., Masashi,T., Akira, T.(1985). “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Power.” Bulletin of the Chemical Society of Japan, vol. 58, pp. 2015-2022.
Ollis,D. F., Pelizzetti, E.(1991)“Photocatalyzed destruction of water contaminants. ” Environmental Science Technology, vol.25, pp. 1522-1529

O'Regan, B., Grätzel, M.(1991).“A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature, vol.353, pp.737-740.

Pan, X., Zhao, Y., Liu, S., Carol, L., Korzeniewski, Wang,S. Fan, Z.(2012).“Comparing Graphene-TiO2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts.”, Applied Materials Interfaces, vol.4, pp.3944−3950.

Paredes,J., Villar-Rodil, I., Martinez-Alonso S. A., Tascon, J. M. D.(2008).“Graphene Oxide Dispersions in Organic Solvents,” Langmuir, vol.24, pp.10560-10564.

Rajeshwar, K., Osugi, M. E., Chanmanee, W.,Chenthamarakshan, C. R., Zanoni, M. V. B.,Kajitvichyanukul, P.; Krishnan-Ayer,R.(2008).“Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media. ” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.9, p.15.

Rani, M., Gupta, N., Pal, B.(2012) “Superior photodecomposition of pyrene by metal ion-loaded TiO2; catalyst under UV light irradiation.” Environmental Science and Pollution Research, vol.19, pp.2305-2312.

Reiche,H., Dunn, W.W., Bard, A.J.(1979). “Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide powders.”Journal of Phyical Chemistry, vol.83, pp.2248-2251.

Rossetti, R., Hull, R., Gibson, J. M., J.Chem.Phys.(1985).“Excited Electronic States and Optical Spectra of ZnS and CdS Crystallites in the ~15Å to 50Å Range: Evolution from Molecular to Bulk Semiconducting Properties”, Journal of Chemical Physics, vol.82, pp.522-559.

Segal, D.(1997).“Chemical synthesis of ceramic materials.”Journal of Materials Chemistry, vol.7, pp.1297-1305.

Sheng, J., Xie, Y., Zhou, Y. (2009). “Adsorption of methylene blue fromaqueoussolution on pyrophyllite.” Applied Clay Science, vol.46, issue 4, pp.422–424.

Spanhel, L., Haase, M., Weller H., Henglein, A.(1987). “Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles.” Journal of the American Chemical Society, vol.109, pp.5649-5655.

Stankovich, S., Piner, R. D., Nguyen, S. T., Ruoff, R. S. (2006) “ Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon, vol.44, pp.3342-3347.

Sun,H., Ullah, R., Chong,S., Ang,H.M., Tadé,M.O., Wang, S.(2011). “Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst.” Applied Catalysis B:Environmental, vol.108–109, pp.127-133.

Suwanchawalit, C., Wongnawa, S., Sriprang, P., Meanha, P.(2012). “Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light.” Ceramics International, vol.38, pp.5201–5207.

Vogt, E.T.C., Boot, A., Vandillen, A.J., Geus J.W. Vanderkerkhof,F.M.G.(1988).“Preparation and performance of a silica-supported V2O5 on TiO2 catalyst for the selective reduction of NO with NH3.” Journal of Catalysis, vol.114, pp. 313-320.

Wang, F.,Zhang, K.(2011).“Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B.” Journal of Molecular Catalysis A:Chemical, vol.345, pp.101-107.

Williams, G., Seger, B., V., Kamat, P.(2008) “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide” ACS Nano, vol.2, issue 7, pp.1487-1491.

Xu,Y., Bai,H., Lu, G.,Li, C.(2008) .“Flexible graphene films via the filtration of water‐soluble noncovalent functionalized graphene sheets.” Journal the American Chemical society, vol.130, pp.5856-5857.

Yu, A. (2008) “Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. ”Advanced Materials, vol.20, pp.4740-4744.

Yu, A., Ramesh, P., Itkis, M. E., Bekyarova, E., Haddon, R. C. (2007)“Graphite nanoplatelet-epoxy composite thermal interface materials. ”Journal Physical Chemistry C, vol.111, pp.7565–7569.

Zhang, H., Lv, X., Li, Y., Wang, Y.,Li,J.(2010).“P25-Graphene Composite as a High Performance Photocatalyst.”American Chemical Society, vol.4, pp.380-386.

Zhang, X.Y., Li, H.P., Cui, X.L., Lin, Y. (2010) “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting” Journal of Materials Chemistry, vol.20, pp.2801-2806.

Zhang, Y., Pan, C.(2011) “TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light.”Journal of Materials Science, vol.46, pp.2622–2626.

Zhang, H., Banfield, J.F.(2000) “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:  Insights from TiO2.” Journal Physical Chemistry B, vol.104, pp.3481-3487.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊