跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃舒瑜
研究生(外文):Shu-Yu Hwang
論文名稱:土壤重金屬0.1NHCl萃取量與全量濃度之相關性研究
論文名稱(外文):Study of the Correlation between 0.1 N HCl Extraction and Total Concentration of Heavy Metals in the Soils
指導教授:童翔新童翔新引用關係
指導教授(外文):Shan-Shin Ton
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:191
中文關鍵詞:全量濃度相關分析多重化學藥劑連續萃取0.1 N HCl萃取法重金屬污染迴歸分析變異數分析
外文關鍵詞:analysis of varianceheavy metals pollutioncorrelation analysistotal metal concentrationregression analysissequential chemical extractions0.1 N HCl extraction
相關次數:
  • 被引用被引用:39
  • 點閱點閱:3202
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
  在自然的物質循環系統中,土壤為一相當重要之介質,它不但提供生物生長所必要之營養元素,同時也是污染物質最終之蓄積場所。隨著人類經濟及社會活動的發展,愈來愈多的化學物質以不正常之方式進入土壤環境中。面對日益嚴重的土壤污染問題,世界各國均進行多項土壤調查及污染管制工作,以維護珍貴之土地資源。我國行政院環境保護署(以下簡稱環保署)為落實土壤污染防治工作,於民國89年公告「土壤及地下水污染整治法」及一系列相關子法,使土壤污染防制與整治工作有明確之法令依據。隨著此法的頒布,行政院環境保護署環境檢驗所(以下簡稱環檢所)於民國91年將土壤中重金屬檢測方法以王水消化法(NIEA S321.62C)取代使用多年的0.1N HCl萃取法(NIEA S320.60T),作為土壤污染調查及污染程度判定之標準。
  為了解土壤中重金屬全量濃度與0.1 N HCl萃取濃度之相關性,以及影響0.1 N HCl萃取量之環境因子,本研究以本省桃園縣及新竹縣受重金屬污染之農地土壤樣品為研究對象,進行土壤基本性質分析(土壤質地、陽離子交換容量)、0.1 N HCl萃取、重金屬全量濃度分析及多重化學藥劑連續萃取(sequential chemical extractions, SCE)等實驗分析工作,並以相關分析(correlation analysis)、變異數分析(analysis of variance, ANOVA)及迴歸分析(regression analysis)等統計方法探討0.1 N HCl萃取濃度與全量濃度之相關性與差異性。
  根據土壤重金屬全量濃度之研究結果發現,酸性消化與王水消化法所獲得之重金屬全量濃度在桃園及新竹地區有不同之比例關係。在重金屬Cu、Ni、Pb及Zn方面,桃園地區酸性消化濃度占王水消化濃度之百分比約為100%;在新竹地區約為60%。而Cr在兩地之百分比則均為60%左右。在0.1N HCl萃取量方面,桃園地區0.1N HCl萃取濃度占酸性消化濃度之比例在重金屬Cr、Cu、Ni、Pb及Zn分別為7.19%、63.97%、10.39%、64.43%與32.31%;在新竹地區之比例則分別為4.1%、82.44%、40.86%、64.73%與34.81%。0.1N HCl萃取量與土壤環境因子之相關分析結果則顯示,0.1 N HCl萃取量與陽離子交換容量(Cation Exchange Capacity, CEC)呈負相關性,與砂粒含量呈正相關性。而生物可利用型態(水溶性、可交換性及碳酸鹽聯結三種型態)之含量雖然和0.1N HCl萃取量呈正相關性,但各金屬之0.1N HCl萃取量幾乎均超過生物可利用型態含量,因此若以0.1N HCl萃取量判定土壤之危害程度恐仍欠周詳。單因子變異數分析結果顯示,砂粒含量是影響0.1N HCl萃取量最重要之環境因子。土壤中砂粒含量愈高,0.1N HCl之萃取效果愈好;反之,隨著砂粒含量之降低,0.1N HCl之萃取效果則有下降之趨勢。本研究對桃園及新竹地區之土壤分別建立0.1N HCl萃取濃度與全量濃度之迴歸關係式,以具體量化各重金屬在兩種濃度間之關係,根據迴歸關係式可對兩種濃度進行推估,並可作為土壤污染場址之調查或整治作業之參考。
In the natural metals circulatory system, soil is an important medium and supplies the nutrients which are indispensable to creature. Moreover, it is the last place where pollutants accumulate. Due to the development of economy and society, more and more chemical matters enter into soil in abnormal ways. Facing increasingly acute problem of soil pollution, many countries give an impetus to the investigation and prevention of soil pollution. In order to protect precious soil resources, the Environmental Protection Administration of R.O.C. promulgated “Soil and Groundwater Pollution Remediation Act” and a series of related regulations in 2000. The Environmental Analysis Laboratory (EAL) set Aqua Regia digestion (NIEA S321.62C) as the method for the inspection and examination of soil pollutants instead of 0.1 N HCl extraction in 2002. Therefore, the concentration of aqua regia digestion is esteemed as the soil pollution control standards.
The purpose of this study is to understand the correlation between 0.1 N HCl extraction and total concentration of heavy metals in the soils. The study area of this research is located in Taoyuan and Hsinchu which is a farmland contaminated by heavy metals. The experimentations include soil texture, cation exchange capacity, 0.1 N HCl extraction, acid digestion and sequential chemical extractions (SCE). The correlation and difference between 0.1 N HCl extraction and total concentration of heavy metals were analyzed by using correlation analysis, analysis of variance (ANOVA) and regression analysis.
According to the total concentrations of heavy metals in the soils, there are different proportions of acid digestion concentrations to aqua regia digestion concentrations in Taoyuan and Hsinchu. For heavy metal Cu, Ni, Pb and Zn, the proportions of acid digestion to aqua regia digestion are 100% in Taoyuan but 60% in Hsinchu. On the other hand, the proportions of 0.1 N HCl extraction to acid digestion concentration for Cr、Cu、Ni、Pb and Zn are 7.19%, 63.97%, 10.39%, 64.43%, 32.31%, respectively in Taoyuan and 4.1%, 82.44%, 40.86%, 64.73%, 34.81%, respectively in Hsinchu. According to the results of correlation analysis, the proportions of 0.1 N HCl extraction to acid digestion concentration were negatively correlated with cation exchange capacity but positively correlated with the percentage of sand and the bioavailability content (sum of water-souble, exchangeable and carbonate-bound). Because 0.1 N HCl extraction always exceeds the bioavailability content, it is improper to use 0.1 N HCl extraction for the diagnostic assessment of contaminated site. The results of ANOVA show that the percentage of sand is the most important environmental factor to influence the proportions of 0.1 N HCl extraction to acid digestion concentration. The proportions increase with the percentages of sand. The final goal of this study is to establish the regression equations between 0.1 N HCl extraction and total concentration of heavy metals in the soils. Regression equations can then be used to estimate these two concentrations and the results can be used as a reference for the investigation and corrective action of contaminated sites.
目 錄
中文摘要 ……………………………………………………………………… i
英文摘要 ………………………………………………………………………iii
目錄 ……………………………………………………………………………v
表目錄 …………………………………………………………………………viii
圖目錄 …………………………………………………………………………vv
第一章、緒論 …………………………………………………………………01
1-1 緣起 ………………………………………………………………………01
1-2 研究動機及目的 …………………………………………………………02
第二章、文獻回顧 ……………………………………………………………04
 2-1 土壤重金屬污染調查之研究 …………………………………………04
2-1-1 重金屬污染物之來源 …………………………………………………04
  2-1-2 台灣地區土壤污染調查概況 ……………………………………06
  2-1-3 國外土壤污染管制概況 …………………………………………12
2-2 重金屬在土壤中之行為與存在型態 ……………………………………14
2-2-1 土壤組成與重金屬吸附 ………………………………………………14
2-2-2 土壤吸附作用之類型 …………………………………………………15
2-2-3 重金屬在土壤中存在型態 ……………………………………………17
2-2-4 重金屬之生物有效性 …………………………………………………18
 2-3 土壤中重金屬分析方法 ………………………………………………20
  2-3-1 0.1 N HCl萃取法…………………………………………………21
 2-3-2 土壤重金屬之全量濃度 ……………………………………………22
2-3-3 多重化學藥劑連續萃取法 ……………………………………………24
2-4 統計分析方法 ……………………………………………………………29
 2-4-1 盒狀圖(box plot) ………………………………………………29
  2-4-2 相關分析(Correlation Analysis)與迴歸分析(Regression
Analysis) ………………………………………………………30
 2-4-3 變異數分析(Analysis of Variance, ANOVA)…………………33
第三章、研究材料與方法 ……………………………………………………37
3-1 污染場址概述及樣品採集 ………………………………………………38
3-1-1 污染場址概述 …………………………………………………………38
3-1-2 土壤樣品來源與保存 …………………………………………………41
3-2 實驗設備與分析方法 ……………………………………………………43
 3-2-1 實驗設備與藥品 ……………………………………………………43
3-2-2 土壤基本性質分析 ……………………………………………………46
3-2-3 土壤中重金屬全量分析 ………………………………………………49
3-2-4 0.1 N HCl萃取法………………………………………………………51
3-2-5 多重化學藥劑連續萃取法 ……………………………………………52
 3-3 實驗分析之品質管制 …………………………………………………53
  3-3-1 品質管制工作 ……………………………………………………53
  3-3-2 品質管制分析結果 ………………………………………………56
第四章、結果與討論 …………………………………………………………61
 4-1 土壤重金屬含量分析 …………………………………………………61
  4-1-1 基本性質分析 ……………………………………………………61
  4-1-2 重金屬全量濃度分析 ……………………………………………63
  4-1-3 0.1 N HCl萃取分析………………………………………………66
  4-1-4 化學藥劑連續萃取分析 …………………………………………68
 4-2 酸性消化法與王水消化法之相關性 …………………………………72
4-3 0.1 N HCl萃取量之研究 ………………………………………………74
  4-3-1 0.1 N HCl萃取量與全量濃度之比例關係………………………74
  4-3-2 0.1 N HCl萃取量與各型態重金屬含量之比較…………………76
  4-3-3 0.1 N HCl萃取量與環境因子之相關分析與變異數分析………78
  4-3-4 0.1 N HCl萃取濃度與全量濃度之簡單線性迴歸關係式………87
第五章、結論與建議 …………………………………………………………94
  5-1 結論 …………………………………………………………………94
  5-2 建議 …………………………………………………………………95
參考文獻 ………………………………………………………………………96
1.Alan, W., Soil and the Environment, Published by the Press Syndicate of the University of Cambridge, p.17, 1993
2.Alloway, W. H., Advances in agronomy. Vol.20.p.240-243, 1968.
3.Beckett, P. H. T., “The use of extractants in studies on trace metals in soils, sewage,sludge and sludge treated soil. “ Advan. Soil Sci. 9:143-176, 1989.
4.Bohn, H. L., McNeal, B. L. and O’Connor, G. A., Soil Chemistry, 2001.
5.Bradford, R., J. Environmental Quality 4:123, 1975.
6.Calmano, W., Forstner, U., and Kersten, M., “Metal associations in anoxic sediments and changes following upland disposal. “ Toxicol. and Environ. Chem. 12:313-321, 1986.
7.Davies, B. E., Trace element pollution, in Applied soil trace elements, Wiley & Son, New York, pp. 287-351, 1980.
8.Elliott, H. A., Liberti, M. R. and Huang, C. P. “Competitive Adsorption of heavy metals by Soils. “ Journal of Environmental Quality, 15:214-219, 1986.
9.Gerhardt, A., “Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. “ Water, Air and Soil Pollution, 17:23-35, 1993.
10.Gruebel, K. A., Davis, J. A., and Leckie, J. O., “The feasibility of using sequential extraction techniques for arsenic and selenium in soil and sediments. “ Soil Sci. Soc. Am. J. 52:390-397, 1988.
11.Harter, R. D., “Effect of Soil pH on Adsorption of Lead, Copper, Zinc, and Nickel.” J. Soil Science Society, Am. 47:47-51, 1983.
12.Hertz, J. C. Angehrn-Bettinazzi, and Stockli, H., “Distribution of heavy metals in various liltter horizons and forest soils, Intern. ” J. Environ. Anal. Chem., 39, 91-99, 1990.
13.Hoover, T. B., Inorganic Species in Water: Ecological Significance and Analytical Needs (A Literature Review). EPA-600/3-78-064, Athens, Georgia, 1978.
14.Irene, M., Lo, C., and Yang, X. Y., Removal and redistribution of metals from contaminated soils by a sequential extraction method, 1998.
15.Keller, C., and Vedy, J. C., “Distribution of copper and cadmium fractions in two forest soils. ” J. Environ. Qual., 23, 987-999, 1994.
16.Lee, S. Z., Allen, H. E., Huang, C. P., Sparks, D. S., Sanders, P. F., and Peijnenburg, W. J. G. M., “Predicting Soil-Water Partition Coefficients for Cadmium.” Environmental Science and technology, 20:669-675, 1996.
17.Lin, J. G., and Chen, S. Y., “The relationship between adsorption of heavy metal and organic matter in river sediments. ” Environment International, Vol. 24, No. 3, pp. 345-352, 1998.
18.Masataka, H., “Heavy metals complexed with humic substances in fresh water. “ Analytical Science, 8, 453-459, 1992.
19.Miller, W. P., Maters, D.C., and Zelazny, L. W., “Effect of sequence in extraction of trace metals from soils. “ Soil Sci. Am. J. 50:598-601, 1986.
20.Monika, M. Kedziorek and Alain Bourg, C. M. “Acidification and solubilisation of heavy metals from single and dual-component model solids. ” Applied Geochemistry, Vol. 11, pp. 299-304, 1996.
21.Murrman, R. P., and Koutz, F. R., Special Report No. 171, U.S. Army Cold Regions Research and Engineering Lab, Hoover, New Hampshire, 1972.
22.Nelson, J. L., Boawn, L. C., and Viets, F.G., Jr. A method for assessing zinc status of soils using acid-extractable zinc and “titratable aldalinity” values, Soil Sci. 88:275-283, 1959.
23.Obrador, A., Rico, M. I., Mingot, J. I., AlvareZ, J. M., Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time, 1997.
24.Prudent, P., Domeizel, M., and Massiani, C., Chemical sequential extraction as decision tool: application to municipal solid waste and its individual constituents, 1996.
25.Ramos, L., Hernandez, L. M., and Gonzalez, M. J., “Sequential fractionation of Copper, Lead, Cadmium and Zinc in soils from or near Donana National Park. “ J. Environ. Qual. 23:50-57, 1994.
26.Shuman, L. M., “Fractionation method for Soil microelements. “ Soil Sci. 140:11-22, 1985.
27.Soon, Y. K., and Bates, T. E., “Chemical pools of cadmium, nickel, and zinc in polluted soils and some preliminary indications of their availability to plants. “ J. Soil Sci., 33, 477-488, 1982.
28.Sposito G., and Schindler, P. W., “Reactions at the Soil Colloid-Soil Solution Interface.” Thrans. 13 th international Conger. J. Soil Science Society, 6:683-699, 1987.
29.Tessier A., Campbell, P. G. C., and Bisson, M., “Sequential extraction procdure for the speciation of particulate trace metals. “ Anal.Chem. 51:844-851, 1979.
30.Ton, S., Delfino, J. J., and Odum, H. T., “Wetland retention of lead from a hazardous site. “ Bulletin of Environmental contamination and Toxicology, Vol. 51, No. 3, pp. 430-437, 1993.
31.Ton, S., Lead cycling through a hazardous waste-impacted wetland.A dissertation presented to the graduate school of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1993.
32.Ton, S., Natural Wetland Retention of Lead from a Hazardous Waste Site, M. S. Thesis, University of Florida, Gainesville, Florida,1990.
33.Tracy, J. E., Oster, J. D., and Beaver, R. J., “Selenium in the southern coast range of california : Well waters, mapped geological units, and related element. “ J. Environ.Qual. 19:46-50, 1990.
34.Tsai, L., Yu, J. K., Chang, C. J. S., and Ho, S. T., Fractionation of heavy metals in sediment cores from the ELL-REN RIVER. Taiwan, 1998.
35.Tukey, J. W. Exploratory Data Analysis, Reading, MA: Addison-Wesley, 1977.
36.Venugopal, B., and Luckey, T. D., Metal Toxicity in Mammals 2: Chemical Toxicity of Meatls and Metalloids.pp.185-195. Plenum Press,1978.
37.中華土壤肥料學會,「土壤分析手冊」,1995。
38.王保進,視窗版SPSS與行為科學研究,1999。
39.王銀波、廖乾華,國外農作物中重金屬之限量標準,農作物中重金屬監測基準資料之建立,P.61-72,1999。
40.王銀波、鄭雙福、劉黔蘭、劉文徹,「台灣地區重金屬污染來源與土壤負荷量之研究-製革、電鍍、畜牧業之研究」,行政院環境保護署委託計劃:EPA-84-E3H1-09-01,1995。
41.行政院環境保護署,「土壤及地下水污染整治法」,2000a。
42.行政院環境保護署,「土壤及地下水污染整治法公佈施行後過渡時期執行要點」,2000b。
43.行政院環境保護署,「土壤及地下水污染整治基金收支保管及運用辦法」,2000c。
44.行政院環境保護署,「土壤污染監測基準」,2000d。
45.行政院環境保護署,「土壤污染管制標準」,2000e。
46.行政院環境保護署,「農地土壤重金屬調查與場址列管計畫」,2002。
47.行政院環境保護署,0.1 N鹽酸部分萃取火焰式原子吸收光譜法,1991a。
48.行政院環境保護署,土壤中陽離子交換容量-醋酸鈉法,1991b。
49.行政院環境保護署,土壤中酸、鹼測定方法,1991c。
50.行政院環境保護署,土壤水分含量測定方法-重量法,1991d。
51.行政院環境保護署,微波消化原子光譜法,1998。
52.行政院環境保護署環境檢驗所,「台灣不同土綱土壤採樣及重金屬含量檢測」,2001。
53.吳宗正,變異數分析-理論與應用,1994。
54.呂昱志,「重金屬污染農地之整治方案研擬-應用能值分析評估鎘污染農地整治方案」,國立中興大學資源管理研究所碩士論文,1996。
55.周文賢、吳水丕、彭游,基本統計原理實習,1889。
56.林炎昌,「有機物影響土壤吸附重金屬特性之探討」,台灣大學環境工程學研究所碩士論文,1988。
57.林浩潭,「以作物中重金屬容許含量推算土壤中重金屬容許含量之探討」,國立中興大學碩士論文,1991。
58.林浩潭、李國欽、賴國仙,「台灣地區不同作物對土壤重金屬吸收之探討」,第三屆土壤污染防治研討會論文集,1992。
59.初建,「台灣數種污染土類土壤之重金屬型態及其釋放趨勢」,國立中興大學碩士論文,1994。
60.初建、王敏昭,「重金屬於其污染土壤之固相型態」,中國農業化學會誌,第三十七卷,第一期 第32-41頁,1999。
61.許玲燕,「土壤樣品之濕式消化探討」,國立中興大學化學研究所碩士論文,1990。
62.許振宏,「豬糞堆肥之重金屬及有機物化學特性與其於土壤之應用研究」,國立台灣大學博士論文,1999。
63.陳尊賢,「台灣地區受重金屬污染土壤之整治經驗與評估」,第五屆土壤污染防治研討會論文集,1997。
64.陳尊賢,「無機毒物質」,土壤分析手冊,中華土壤肥料學會主編,1995。
65.陳尊賢、陸瑩、黃東亮、吳芳娥,「台灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性」,第三屆土壤污染防治研討會論文集,1992。
66.童翔新,「土壤中重金屬污染物分析方法研究」,逢甲學報,第二十九期,第87-96頁,1996。
67.童翔新、歐育憲、葉奕宏、陳欽昭,「土壤中重金屬污染物之生物有效性意義研究」,第十五屆廢棄物處理技術研討會論文集,2000。
68.童翔新、羅良慧,「土壤鎘污染危害評價系統建立之研究」,第十屆環境規劃與管理研討會論文集,第37-44頁,1997。
69.黃山內,「台灣農地土壤污染現況」,第一屆土壤污染防治研討會論文集,第4-21頁,1992。
70.黃如宏、陳尊賢、張仲民,「不同萃取劑對台灣代表性土壤中金屬之萃取效果比較」,中國農業化學會誌,第二十六卷,第四期,1988。
71.葉兆輝譯,統計學導論,2001。
72.葉旗福,「淺談pH計」,環境檢驗季刊,第47期,第9-12頁,2003。
73.劉原宏,「台灣主要土壤中重金屬之吸附性與聯結態之探討」,屏東技術學院環境工程研究所碩士論文,1995。
74.劉鎮宗,「土壤中有毒重金屬的清道夫」,環境工程會刊,第七卷,第一期,1996。
75.歐育憲,「土壤中重金屬污染物之生物有效性意義研究」,逢甲大學環境工程與科學研究所碩士論文,2000。
76.蔡呈奇、陳尊賢、許正一、郭鴻裕,「台灣地區各縣式代表土壤的選定與其相關資料庫的建立」,第二屆海峽兩岸土壤肥料學術研討會論文集,1998。
77.鄭惟厚譯,統計學的世界,第356-398頁,2002。
78.戴國邦、車明道、王興濬,「台灣地區重金屬污染來源與土壤負荷量之研究-化工、電子及陶瓷、玻璃業之研究」,環境保護署委託計劃:EPA-84-E3H1-09-02,1995。
79.鍾旻修,「土壤重金屬污染物之空間分布探討─應用地理資訊系統之空間推估模組」,逢甲大學環境工程與科學研究所碩士論文,2003。
80.薩支高,「以不同消化方法探討本省南部及東部農業區與都會區數種土壤中重金屬含量及其存在型態的差異」,土壤與環境,第一卷,第一期,第31-41頁,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top