跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬景宏
研究生(外文):Chin-Hung Ma
論文名稱:車用裝置於全球衛星定位系統訊號下之通道模型研究
論文名稱(外文):Car-Based Channel Model Research for Global Position System
指導教授:涂世雄涂世雄引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:58
中文關鍵詞:模型通道
外文關鍵詞:Channel model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  摘要
  本論文探討車用無線通道, 可預估無線通訊系統在車用時的效能, 利用情境訊號強度參數, 使手持式產品可在車內使用時的情況得以評估 。
傳統上, 在研究待測物的效能時, 常使用測試天線與待測物品上的天線並且使兩物連結之, 找出待測物在特定環境上之訊號強度, 其為最常見之方式之一。 於此吾人以為反推則可得到環境之通道模型于分析測試結果後。 此外, 瑞雷衰減與雷迅衰減是兩種基本的通道衰減形式以表現視距與非視距傳輸之環境。 本論文將以全球衛星定位系統探討頻率於1575.42百萬赫時之訊號強度以視距在車內傳輸之研究。 且於加入情境訊號強度參數後評估待測物之效能。 也將在第三章第二節介紹蜂巢電信與互連網協會所定訂之測試方法, 並以此法找出近場效應對待測天線效能之影響, 使之用以評估車內使用之效能。
情境訊號強度參數是一組補償之值, 當其待測天線受環境所影響之時, 則其效用始能發揮。 近年以來, 手持式產品日漸受到歡迎, 加入近場之影響對其通道效能的評估能達到更精確之目的。
Abstract
This thesis investigates the car-based channel model to evaluate the wireless performance for handheld device in the open space by adding a factor from the “Scenario Signal Strength” method.
Traditionally using the test equipment with antenna and “DUT(Device Under Test)” to find out the value of the signal strength is the most popular method to find out the DUT performance in the specific test environment. By using this method we can find out the relationship between the channel model and our test environment after analysis the test results. Rayleigh fading distribution and Rician fading distribution are the basic types for the LOS and none LOS environment. We will use the Global Position System for the 1575.42MHz signal strength research in LOS put the device in a car. In this thesis, we will use a “Scenario Signal Strength” method for the AUD performance estimation. We will introduce the CTIA test program in Chapter3.2 and we will test the AUT performance in a CTIA approved 3D chamber, and then provide several models to simulate the near field affection for the AUD. We can provide several different factors to compensate the near field affection for the antenna when we do the performance test in the car.
“Scenario Signal Strength” factor is a compensation value for channel model when the antenna in the user equipment is impacted by the environments. In recent years the handheld product is more and more popular for people. The concept that adds the near field affection for a channel model is helped to have a more accurate value for evaluation.
Contents:
Chinese Abstract- ------------------------------------------------------i
Abstract-----------------------------------------------------------------ii
Contents----------------------------------------------------------------iv
Figure List--------------------------------------------------------------vi
Table List----------------- --------------------------------------------viii
Chapter1 Introducti on-------------------------------------------------1
1.1 Background------------------- ---------------------------------1
1.2 Main Results---------------------------------------------------9
1.3 Organization of This Th esis---------------------------------13
Chapter2 Technology Background--------------------------------- --14
2.1 Fading------------------------------------------------------------14
2.1.1 Introduction of f ading------------------------------------14
2.1.2 Large-scale Fa ding--------------------------------------- 18
2.1.3 Small-scale Fa ding--------------------------------------- 20
2.2 Car-based Channel Model----------------------------------- ---22
2.2.1 Path Loss Model ----------------------------------------22
2.2.2 Path Loss Evaluation in Car---------------------------26
2.3 Global Position System-----------------------------------------28
Chapter3 Scenario Signal Strengt h Method for Channel Model--30
3.1 CTIA Test Progr am ---------------------------------------- ----30
3.2 Scenario Signal Strength Factor for Channel Model--------3 5
3.3 GPS Device Performance Test Result-------------------------40
Chapter 4 Conclusions and Further Research--------------------- --45
Reference -------------------------------------------------------------47


Figure List:
1.1 2 Ways communication sy stem application------------------3
1.2 The limitation of the dista nce between the transmitter to t he
receiver-------------------- --------------------------------------------7
2.1 The received signal from the base-station, and the first ar rived
signal to the receiver is LOS signal--------------------------- -16
2.2 An OFDM wireless communicat ion system tested performance
in the environment with multi -path fading for 3 meters
distance test resul t------------------------------------------------21
2.3 path loss distribution wh en the distance between the
transmitter and receiver from 0 to 100 meters-----------------2 3
2.4 The simulation result from t he equation (2.5) and the test
result --------------------------------------------------------------24
2.5 The test horn antenna setup for the signal measurement for the
path loss-----------------------------------------------------------24
2.6 The height of th e DUT-------------------------------------- -----25
2.7 The simulation reault compare to the test result with virti cal
polarization antenna gain of the device----------------------27
2.8 Satellite around th e earth----------------------------------------29
3.1 Great circle cut-------------------------------------------------31
3.2 Conical cut------------------------------------------------------31
3.3 Coordination system and meas urement antenna polarization
--------------------------------- ------------------------------ ----------32
3.4 Coordination system and meas urement antenna polarization
--------------------------------- ------------------------------ ----------33
3.5 Sδ 2 Handheld device is vertical t o the copper plane in the
CTIA test environmen t-------------------------------------------35
3.6 Handheld device is horizont al to the copper plane---------- -36
3.7 Radiation pattern test ed in CTIA chamber in Sδ 1 for vertical
polarization--------------- ----------------------------------------36
3.8 Radiation pattern test ed in CTIA chamber in Sδ 2 for vertical
polarization--------------- ----------------------------------------36
3.9 Radiation pattern test ed in CTIA chamber in Sδ 3 for vertical
polarization--------------- ----------------------------------------37
3.10 Add the free space antenna ver tical polarization gain -5.2 5
dBi for the test result in Table (2.1)------------------------- --38


3.1 Great circle cut-------------------------------------------------31
3.2 Conical cut------------------------------------------------------31
3.3 Coordination system and meas urement antenna polarization
--------------------------------- ------------------------------ ----------32
3.4 Coordination system and meas urement antenna polarization
--------------------------------- ------------------------------ ----------33
3.5 Sδ 2 Handheld device is vertical t o the copper plane in the
CTIA test environmen t-------------------------------------------35
3.6 Handheld device is horizont al to the copper plane---------- -36
3.7 Radiation pattern test ed in CTIA chamber in Sδ 1 for vertical
polarization--------------- ----------------------------------------36
3.8 Radiation pattern test ed in CTIA chamber in Sδ 2 for vertical
polarization--------------- ----------------------------------------36
3.9 Radiation pattern test ed in CTIA chamber in Sδ 3 for vertical
polarization--------------- ----------------------------------------37
3.10 Add the free space antenna ver tical polarization gain -5.2 5
dBi for the test result in Table (2.1)------------------------- --38
Reference:
[1] J. D. Pardons. The Mobile Radio Propagation Channel Second Edition. JOHN WILEY&SON
[2]H. Xu, V. Kukshya T.S. Rappaport,”Spatial and temporal characteristics of 60-GHz indoor channel,”Selected Areas in Communications, IEEE Journal on vol. 20, Issue3, pp. 620-630, April 2002.
[3] Da-Shan Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn, “Fading
correlation and its effect on the capacity of multielement antenna
systems,” IEEE Transactions on Communications, vol. 48, no. 3, pp.
502–513, March 2000.
[4] Chen-Nee Chuah, J.M. Kahn, and D. Tse, “Capacity of multi-antenna
array systems in indoor wireless environment,” in IEEE Global Telecommunications
Conference, 1998, vol. 4, Sydney, Australia, 1998, pp.
1894–1899.
[5] J.P. Kermoal, L. Schumacher, K.I. Pedersen, P.E. Mogensen, and F. Frederiksen,
“A stochastic MIMO radio channel model with experimental
validation,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 6, pp. 1211–1226, Aug. 2002.
[6] W. Weichselberger, M. Herdin, H. O¨ zcelik, and E. Bonek, “A stochastic
MIMO channel model with joint correlation of both link ends,” to appear
in IEEE Transactions on Wireless Communications, 2005.
[7] W. Weichselberger, “Spatial structure of multiple antenna radio channels
- a signal processing viewpoint,” Ph.D. dissertation, Technische Universit
¨at Wien, Dec. 2003, downloadable from http://www.nt.tuwien.ac.at.
[8] A.M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE
Transactions on Signal Processing, vol. 50, no. 10, pp. 2563 – 2579,
October 2002.
[9] M.T. Ivrlac and J.A. Nossek, “Quantifying diversity and correlation
[10]“Test Plan for Mobile Station Over the Air Performance” Revision 2.1
[11] Da-Shan Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn, “Fading
correlation and its effect on the capacity of multielement antenna
systems,” IEEE Transactions on Communications, vol. 48, no. 3, pp.
502–513, March 2000.
[12] Chen-Nee Chuah, J.M. Kahn, and D. Tse, “Capacity of multi-antenna
array systems in indoor wireless environment,” in IEEE Global Telecommunications
Conference, 1998, vol. 4, Sydney, Australia, 1998, pp.
1894–1899.
[13] J.P. Kermoal, L. Schumacher, K.I. Pedersen, P.E. Mogensen, and F. Frederiksen,
“A stochastic MIMO radio channel model with experimental
validation,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 6, pp. 1211–1226, Aug. 2002.
[14] W. Weichselberger, M. Herdin, H. O¨ zcelik, and E. Bonek, “A stochastic
MIMO channel model with joint correlation of both link ends,” to appear
in IEEE Transactions on Wireless Communications, 2005.
[15] W. Weichselberger, “Spatial structure of multiple antenna radio channels
- a signal processing viewpoint,” Ph.D. dissertation, Technische Universit
¨at Wien, Dec. 2003, downloadable from http://www.nt.tuwien.ac.at.
[16] A.M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE
Transactions on Signal Processing, vol. 50, no. 10, pp. 2563 – 2579,
October 2002.
[17] J. P. Kermoal, L. Schumacher, P. E. Mogensen, K. I. Pedersen,
“Experimental Investigation of Correlation Properties of MIMO
Radio Channels for Indoor Picocell Scenarios,” Vehicular
Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd vol.
1, pp. 14-21, Sept. 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top