跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥志
研究生(外文):Yen-Chih Chen
論文名稱:新的定量化合物結構與生物活性關係模型在階層分群法及遺傳演算法的實際運用
論文名稱(外文):A New Quantitative Structure-Activity Relationship Model for Practical Applications using Hierarchical Clustering Genetic Algorithms
指導教授:高成炎高成炎引用關係
指導教授(外文):Chang-Yen Kao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:62
中文關鍵詞:階層分群法化合物篩選遺傳演算法生物資訊電腦輔助藥物設計生物活性預測特徵篩選
外文關鍵詞:Hierarchical ClusteringCompound SelectionGenetic AlgorithmBioinformaticsComputer-Aided Drug DesignBiological Activity PredictionFeature Selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
定量化合物結構與生物活性關係(QSAR)的主要目的,是在化合物的物化特性以及該化合物的生物活性之間,制定出數學上的對應關係。其推導出的QSAR模型之後便能夠從事許多的實際運用,例如化合物的分類、藥物運作機制的診斷、生物活性預測、以及前導藥物的最佳化等等。因此QSAR一般被公認為是電腦輔助藥物設計中最好的方法。在這篇論文當中,我們會運用遺傳演算式部分最小平方法(GA-PLS)與階層分群式部分最小平方法(HC-PLS),來建立一個可靠並且具備多功能的QSAR模型。
根據一連串的研究,Selwood和Holloway兩個生物資料集成功地驗證了我們的模型。其中的優點可以概述如下:首先,GA-PLS能夠挑選出決定生物活性時扮演重要角色的顯著分子特徵,而且透過改良GA-PLS缺點所設計的兩個新要素,隱含變數編碼染色體以及偏向突變,使得GA-PLS在效能和準確性上都有了進一步的提升。另外,HC-PLS可以鑑別出資料集當中具代表性的化合物,來幫助生物活性預測與群集特性的深入分析。並且我們已經從實驗中證實,除了分子特徵之外,將生物活性納入計算化合物相似性的基準當中,更有機會發現真正在物化及生物特性上相似的化合物。
最後的成果令人滿意,由GA-PLS和HC-PLS所推導出的QSAR模型,除了具有高度預測能力之外,也同時增進我們對藥物運作的瞭解,以及提供在藥物設計上的理論基礎。
The purpose of quantitative structure-activity relationship (QSAR) is to formulate mathematical relationships between physico-chemical properties of compounds and their experimentally determined in vitro biological activities. The derived QSAR model can be subsequently applied to many practical applications, such as compound classification, diagnosis of drug mechanism, prediction of biological activity, and lead optimization. QSAR are commonly regarded as the best approaches to computational molecular design. To develop a reliable and versatile QSAR model, genetic algorithm-based partial least squares (GA-PLS) and hierarchical clustering-based partial least squares (HC-PLS) are employed in this thesis.
According to a series of studies, the results have been successfully validated by Selwood and Holloway data sets. The benefits of our model can be summarized as follow. First, GA-PLS is capable of selecting the significant molecular descriptors that play an important role in determining biological activity. By means of encoding the latent variable of PLS into chromosome and combining biased mutation with uniform mutation, GA-PLS can further improve the efficiency and accuracy of QSAR model. Second, HC-PLS is able to discriminate the representative compounds in the data set to facilitate molecular property prediction or to further analyze the subsets. Based on the comparison between molecular descriptors and biological activities (actual values for the training data and predicted values for the test data), the similar compounds have more potential to exhibit similar physicochemical and biological properties.
With the encouraging achievements, the highly predicted QSAR model derived by GA-PLS and HC-PLS not only enhances our understanding of the specifics of drug action, but also provides a theoretical foundation for future lead optimization.
Table of Contents v
List of Figures vii
List of Tables ix
List of Abbreviations x
List of Symbols xi
Chapter 1 Introduction 1
1.1 Theory of QSAR 2
1.1.1 Free-Wilson Analysis 2
1.1.2 Hansch Analysis 2
1.1.3 3D QSAR 3
1.2 Applications of QSAR 6
1.2.1 Absorption and Distribution of Drugs 6
1.2.2 Enzyme Inhibitors 7
1.2.3 Other Biological Data 7
1.3 Current Problems in QSAR Studies 7
1.3.1 Validation of QSAR models 8
1.3.2 Variable Selection 9
1.3.3 Compound Selection 9
1.4 Contributions of QSAR to drug design 10
1.5 Thesis Overview 11
Chapter 2 Biological Data Sets 12
2.1 Selwood Data Set 12
2.2 Holloway Data Set 14
2.2.1 Model Building of Protein Complex with Inhibitors 15
2.2.2 Molecular Mechanics and Feature Calculation 16
Chapter 3 Genetic Algorithm-Based Partial Least Squares 18
3.1 Introduction 18
3.2 Methodology 19
3.2.1 Fundamental Steps of GA-PLS 20
3.2.2 Improvements of GA-PLS 21
3.2.3 PLS Analysis of QSAR Models 22
3.3 Results and Discussion 23
3.3.1 Experimental Design 23
3.3.2 GA-PLS Model Validation 24
3.3.3 GA-PLS Model Analysis 30
3.4 Summary 36
Chapter 4 Hierarchical Clustering-Based Partial Least Squares 37
4.1 Introduction 37
4.2 Methodology 39
4.2.1 QSAR Modeling 39
4.2.2 Similarity Calculations 40
4.2.3 Hierarchical Clustering 40
4.2.4 Predict Biological Activities 41
4.2.5 Determination of HC-PLS Parameters 42
4.3 Results and Discussion 43
4.3.1 Experimental Design 43
4.3.2 HC-PLS Model Validation 43
4.3.3 HC-PLS Model Analysis 45
4.4 Summary 54
Chapter 5 Conclusions 55
5.1 Summary 55
5.2 Major Contributions 56
5.3 Future Works 56
Bibliography 57
[1]Accelrys Inc., Insight II Modeling Environment, Release 2000, San Diego, (1999).
[2]Baker, J.E., Reducing bias and inefficiency in the selection algorithm. Proc. ICGA 2, 14-21 (1987).
[3]Barnard, J. M., Downs, G. M., Clustering of Chemical Structures on the Basis of 2-D Similarity Measures. J. Chem. Inf. Comput. Sci. 32, 644-649 (1992).
[4]Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., Clementi, S., Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct.-Act. Relat. 12, 9-20 (1993).
[5]Besler, B.H., Merz, K.M., Kollman, P.A., Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem. 11, 431-439 (1990).
[6]Blaney, J.M. et al., Chem. Rev. 84, 333-407 (1984).
[7]Blankley, C.J., In Structure-Property Correlations in Drug Research (van de Waterbeemd, H., ed.). Academic Press, 111-177 (1996).
[8]Brown, R.D., Martin, Y.C., Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36, 572-584 (1996).
[9]Camenisch, G., Folkers, G., van de Waterbeemd, H., Pharm. Acta. Helv. 71, 309-327 (1996).
[10]Chipperfield, A.J., Fleming, P.J., Fonseca, C.M., Proc. Adaptive Computing in Engineering Design and Control, Plymouth Engineering Design Center, 21-22 September 128-133 (1994).
[11]Chipperfield, A.J., Fleming, P.J., IEE Colloqium on Applied Control Techniques Using MATLAB, 14. (1995)
[12]Cho, S.J., Hermsmeier, M.A., Genetic algorithm guided selection: Variable selection and subset selection, J. Chem. Inf. Comput. Sci. 42, 927-936 (2002).
[13]Cramer, R.D., III, Patterson, D.E., Bunce, J.D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959-5967 (1988).
[14]Cramer, R.D., III et al., Quant. Struct.-Act. Relatsh. 7, 18-25, erratum 7, 91 (1988).
[15]Cramer, R.D., III, Milne, M., Am. Chem. Soc. Meeting, April 1979, Computer Chemistry Section. Abstr. no. 44 (1979).
[16]Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 107, 3902-3909 (1985).
[17]Downs, G. M., Barnard, J. M., Clustering methods and their uses in computational chemistry. Rev. Comput. Chem. 18, 1-40 (2002).
[18]Downs, G. M., Willett, P., In Advanced Computer-Assisted Techniques in Drug Discovery; van de Waterbeemd, H., Ed.; VCH: Weinheim, Vol. 3 (1994).
[19]Fan, Y., Leming, M. S., Kohn, K. W., Pommier, Y., Weinstein, J. N., Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm based studies. J. Med. Chem. 44, 3254-3263 (2001).
[20]Free, S. M. Jr., Wilson, J.W., A Mathematical Contribution to Structure Activity Studies, J. Med. Chem. 7, 395-399 (1964).
[21]Fujita, T., Ban, T., Structure-Activity Study of Phenethylamines as Substrates of Biosynthetic Enzymes of Sympathetic Transmitters, J. Med. Chem. 14, 148-152 (1971).
[22]Gilbert, N. Statistics, W. B. Saunders, Co., Philadelphia, PA, (1976).
[23]Green, S.M., Marshall, G.R., Trends Pharmacol. Sci. 16, 285-291 (1995).
[24]H. Kubinyi, Variable selection in QSAR studies.1.An evolutionary algorithm, Quant. Struct.-Act. Relat. 13, 285-294 (1994).
[25]Hansch, C., A Quantitative Approach to Biochemical Structure-Activity Relationships, Acc. Chem. Res. 2, 232-239 (1969).
[26]Hansch, C., Fujita, T., Analysis. A Method for the Correlation of Biological Activity and Chemical Structure, J. Am. Chem. Soc. 86, 1616-1626 (1964).
[27]Hansch, C., Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, (1995).
[28]Hasegawa, K., Kimura, T., Funatsu, K., GA Strategy for Variable Selection in QSAR Studies: Enhancement of Comparative Molecular Binding Energy Analysis by GA-Based PLS Method. Quant. Struct.-Act. Relat. 18, 262-272 (1999).
[29]Holloway et al.: A prior prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J. Med. Chem. 38, 305-317 (1995).
[30]Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., Madhav, P. J., Duraiswami, C., Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 119, 10509-10524 (1997).
[31]http://www.shef.ac.uk/uni/projects/gaipp/ga-toolbox/
[32]Johnson, M., Maggiora, G. M., Concepts and Applications of Molecular Similarity; Wiley: New York, (1990).
[33]Kim, K.H., in Molecular Similarity in Drug Design (Dean, P.M., ed.), 291-331, Chapman & Hall, (1995).
[34]Kubinvi, H., Drug Discovery Today 2, part 2 (1997).
[35]kubinyi, H., Drug Discovery Today 2, 457-467 part 1 (1997).
[36]Kubinyi, H., ed. 3D QSAR in Drug Design, Theory, Methods and Applications, ESCOM Science Publishers, (1993).
[37]Kubinyi, H., Folkers, G., Martin, Y.C., eds 3D QSAR in Drug Design. Volume II: Ligand-Protein Interactions and Molecular Similarity and Volume III: Recent Advances, Kluwer Academic Publishers, (1997).
[38]Kubinyi, H., J. Chemomet. 10, 119-133 (1996).
[39]Kubinyi, H., QSAR Hanscb Analysis and Related Approaches, VCH, (1993).
[40]Kubinyi, H., The Free Wilson Method and its Relationship to the Extrathermodynamic Approach, in: Ramsden, C.A., (Ed.), Quantitative Drug Design, Volume 4 of: Hansch, C., Sammes, P. G. and Taylor, J. (Eds.), Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds, Pergamon Press, Oxford, 589-643 (1990).
[41]Kubinyi, H., Variable selection in QSAR studies.II. A high efficient combination of systematic search and evolution, Quant. Struct.-Act. Relat. 13, 393-401 (1994).
[42]Leardi, R., Genetic Algorithms in Feature Selection in: Devillers, J. (Ed.), Genetic Algorithms in Molecular Modeling, Principles of QSAR and Drug Design Vol. 1, Academic Press, London, 67-86 (1996).
[43]Lifson, S., Hagler, A.T., Dauber, P., Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals I: Carboxylic Acids, Amides, and the C=O…H Hydrogen Bonds. J. Am. Chem. Soc. 101, 5111-5120 (1979).
[44]Lindgren, F., Geladi, P., Berglund, A., Sjostrom, M,. Wold, S., Interactive variable selection (IVS) for PLS. Part II: chemical applications. J. Chemom. 9, 331-342 (1995).
[45]Martin, Y.C., Kim, K-H., Lin, C.T., In Advances in Quantitative Structure Property Relationships (Vol. I) (Charton, M., ed.), 1-52, JAI Press, (1996).
[46]Martin, Y.C., Lin, C.T., In The Practice of Medicinal Chemistry (Wermuth, C.G., ed.), 459-483, Academic Press, (1996).
[47]McFarland, J. W., Gans, D. J., Cluster significance analysis contrasted with three other quantitative structure-activity relationship methods. J. Med. Chem. 30, 46-49 (1987).
[48]McFarland, J.W., Gans, D.J., On identifying likely determinants of biological activity in high dimensional QSAR problems, Quant. Struct.-Act. Relat. 13, 11-17 (1994).
[49]Mühlenbein, H., Schlierkamp-Voosen, D., “Predictive Models for the Breeder Genetic Algorithm: I. Continuous Parameter Optimization”, Evolutionary Computation, Vol. 1, No. 1, 25-49, (1993).
[50]Navia, M.A., Chaturvedi, P.R., Drug Discovery Today 1, 179-189 (1996).
[51]Nicolotti, O., Gillet, V.J., Fleming, P.J., Green, D.V.S., Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs, J. Med. Chem. 45, 5069-5080 (2002).
[52]Ortiz, A.R., Pisabarro, M.T., Gago, F., Wade, R.C., Prediction of Drug Binding Affinities by Comparative Binding Energy Analysis. J. Med. Chem. 38, 2681-2691 (1995).
[53]Pearlman, R.S., Cbem. Design Automation News 8 (8), 3-15 (1993).
[54]Perez, C., Pastor, M., Ortiz, A.R., Gago, F., Comparative Binding Energy Analysis of HIV-1 Protease Inhibitors: Incorporation of Solvent Effects and Validation as a Powerful Tool in Receptor-Based Drug Design. J. Med. Chem. 41, 836-852 (1998).
[55]Pliska, V., Testa, B., van de Waterbeemd, H., eds Lipophilicity in Drug Action and Toxicology, VCH, (1996).
[56]Ramsden, C.A., ed. Quantitative Drug Design (Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study & Therapeutic Application of Chemical Compounds) (Vol.4) (Hansch, C., Sammes, P.G. and Taylor, J.B., eds), Pergamon Press, (1990).
[57]Rogers, D., Hopfinger, A.J., Applications of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 34, 854-866 (1994).
[58]Rudolf, K., Marcia, M.C.F., A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors I. The chemometric approach. J. Mol. Graph. 21, 435-448 (2003).
[59]Sadowski, J., Gasteiger, J., Cbem. Rev. 93, 2567-2781 (1993).
[60]Schechter, I., Berger, A., On the Size of the Active Site in Proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157-162 (1967).
[61]Selwood, D.L., Livingstone, D.J., Comley, J.C. W., O’Dowd, A.B., Hudson, A.T., Jackson, P., K.S. Jandu, V.S., Rose, Stables, J.N., Structure-activity relationships of antifilarial antimycin analogues: A multivariate pattern recognition study, J. Med. Chem., 33, 136-142 (1990) (data set downloaded from: http://www.disat.unimib.it/chm/Datasets.htm#Selwood).
[62]So, S.S., Karplus, M., Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks, J. Med. Chem. 39, 1521-1530 (1996).
[63]Stewart, J.J.P., MOPAC 93, Fujitsu Ltd., Tokyo Japan, (1993).
[64]SYBYL/QSAR, Molecular Modelling Software, Tripos Inc., S. Hanley Road, St Louis, MO 63944, USA, (1699).
[65]Thompson et al., Synthesis and Antiviral Activity of a Series of HIV-1 Protease Inhibitors with Functionality Tethered to the P1 or P1’ Phenyl Substituents: X-ray Crystal Structure Assisted Design. J. Med. Chem. 35, 1685-1701 (1992).
[66]Topliss, J.G., Costello, R.J., J. Med. Chem. 15, 1066-1068 (1972).
[67]van de Waterbeemd, H., ed,. Chemometric Methods in Molecular Design, VCH, (1995).
[68]van de Waterbeemd, H., ed., Advanced Computer-Assisted Techniques in Drug Discovery, VCH, (1995).
[69]van de Waterbeemd, H., ed., Chemometric Methods inMolecular Design, VCH, (1995).
[70]van de Waterbeemd, H., Kansy, M., Chimia 46, 299-303 (1992).
[71]Waller, C.L., Bradley, M.P., Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies. J. Chem. Inf. Comput. Sci. 39, 345-355 (1999).
[72]Wanchana, S., Yamashita, F., Hashida, M., QSAR Analysis of Inhibition of Recombinant CYP 3A4 Activity by Structurally Diverse Compounds Using a Genetic Algorithm-Combined Partial Least Squares Method. Pharmaceutical Research 20 9, 1401-1408 (2003).
[73]Wang, Y.X., Freedberg, D.I., Yamazaki, T., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Kiso, Y., Torchia, D.A., Solution NMR Evidence That the HIV-1 Protease Catalytic Aspartyl Groups Have Different Ionization States in the Complex Formed with the Asymmetric Drug KNI-272. Biochemistry 35, 9945-9950 (1996).
[74]Wikel, J.H., Dow, E.R., The use of neural networks for variable selection in QSAR, Bioorg. Med. Chem. Lett. 3, 645-651 (1993).
[75]Wold, S., Johansson, E., Cocchi, M., PLS - Partial least-squares projections to latent structures. In H. Kubinyi Ed., 3D QSAR in Drug Design; Theory, Methods and Applications. ESCOM Science Publishers, Leiden Holland, (1993).
[76]Y.S. Prabhakar, A combinatorial approach to the variable selection in multiple linear regression: Analysis of Selwood et al. data set a case study, Quant. Struct.-Act. Relat. 22, 583-595 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top