|
[1]Accelrys Inc., Insight II Modeling Environment, Release 2000, San Diego, (1999). [2]Baker, J.E., Reducing bias and inefficiency in the selection algorithm. Proc. ICGA 2, 14-21 (1987). [3]Barnard, J. M., Downs, G. M., Clustering of Chemical Structures on the Basis of 2-D Similarity Measures. J. Chem. Inf. Comput. Sci. 32, 644-649 (1992). [4]Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., Clementi, S., Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct.-Act. Relat. 12, 9-20 (1993). [5]Besler, B.H., Merz, K.M., Kollman, P.A., Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem. 11, 431-439 (1990). [6]Blaney, J.M. et al., Chem. Rev. 84, 333-407 (1984). [7]Blankley, C.J., In Structure-Property Correlations in Drug Research (van de Waterbeemd, H., ed.). Academic Press, 111-177 (1996). [8]Brown, R.D., Martin, Y.C., Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36, 572-584 (1996). [9]Camenisch, G., Folkers, G., van de Waterbeemd, H., Pharm. Acta. Helv. 71, 309-327 (1996). [10]Chipperfield, A.J., Fleming, P.J., Fonseca, C.M., Proc. Adaptive Computing in Engineering Design and Control, Plymouth Engineering Design Center, 21-22 September 128-133 (1994). [11]Chipperfield, A.J., Fleming, P.J., IEE Colloqium on Applied Control Techniques Using MATLAB, 14. (1995) [12]Cho, S.J., Hermsmeier, M.A., Genetic algorithm guided selection: Variable selection and subset selection, J. Chem. Inf. Comput. Sci. 42, 927-936 (2002). [13]Cramer, R.D., III, Patterson, D.E., Bunce, J.D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959-5967 (1988). [14]Cramer, R.D., III et al., Quant. Struct.-Act. Relatsh. 7, 18-25, erratum 7, 91 (1988). [15]Cramer, R.D., III, Milne, M., Am. Chem. Soc. Meeting, April 1979, Computer Chemistry Section. Abstr. no. 44 (1979). [16]Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 107, 3902-3909 (1985). [17]Downs, G. M., Barnard, J. M., Clustering methods and their uses in computational chemistry. Rev. Comput. Chem. 18, 1-40 (2002). [18]Downs, G. M., Willett, P., In Advanced Computer-Assisted Techniques in Drug Discovery; van de Waterbeemd, H., Ed.; VCH: Weinheim, Vol. 3 (1994). [19]Fan, Y., Leming, M. S., Kohn, K. W., Pommier, Y., Weinstein, J. N., Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm based studies. J. Med. Chem. 44, 3254-3263 (2001). [20]Free, S. M. Jr., Wilson, J.W., A Mathematical Contribution to Structure Activity Studies, J. Med. Chem. 7, 395-399 (1964). [21]Fujita, T., Ban, T., Structure-Activity Study of Phenethylamines as Substrates of Biosynthetic Enzymes of Sympathetic Transmitters, J. Med. Chem. 14, 148-152 (1971). [22]Gilbert, N. Statistics, W. B. Saunders, Co., Philadelphia, PA, (1976). [23]Green, S.M., Marshall, G.R., Trends Pharmacol. Sci. 16, 285-291 (1995). [24]H. Kubinyi, Variable selection in QSAR studies.1.An evolutionary algorithm, Quant. Struct.-Act. Relat. 13, 285-294 (1994). [25]Hansch, C., A Quantitative Approach to Biochemical Structure-Activity Relationships, Acc. Chem. Res. 2, 232-239 (1969). [26]Hansch, C., Fujita, T., Analysis. A Method for the Correlation of Biological Activity and Chemical Structure, J. Am. Chem. Soc. 86, 1616-1626 (1964). [27]Hansch, C., Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, (1995). [28]Hasegawa, K., Kimura, T., Funatsu, K., GA Strategy for Variable Selection in QSAR Studies: Enhancement of Comparative Molecular Binding Energy Analysis by GA-Based PLS Method. Quant. Struct.-Act. Relat. 18, 262-272 (1999). [29]Holloway et al.: A prior prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J. Med. Chem. 38, 305-317 (1995). [30]Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., Madhav, P. J., Duraiswami, C., Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 119, 10509-10524 (1997). [31]http://www.shef.ac.uk/uni/projects/gaipp/ga-toolbox/ [32]Johnson, M., Maggiora, G. M., Concepts and Applications of Molecular Similarity; Wiley: New York, (1990). [33]Kim, K.H., in Molecular Similarity in Drug Design (Dean, P.M., ed.), 291-331, Chapman & Hall, (1995). [34]Kubinvi, H., Drug Discovery Today 2, part 2 (1997). [35]kubinyi, H., Drug Discovery Today 2, 457-467 part 1 (1997). [36]Kubinyi, H., ed. 3D QSAR in Drug Design, Theory, Methods and Applications, ESCOM Science Publishers, (1993). [37]Kubinyi, H., Folkers, G., Martin, Y.C., eds 3D QSAR in Drug Design. Volume II: Ligand-Protein Interactions and Molecular Similarity and Volume III: Recent Advances, Kluwer Academic Publishers, (1997). [38]Kubinyi, H., J. Chemomet. 10, 119-133 (1996). [39]Kubinyi, H., QSAR Hanscb Analysis and Related Approaches, VCH, (1993). [40]Kubinyi, H., The Free Wilson Method and its Relationship to the Extrathermodynamic Approach, in: Ramsden, C.A., (Ed.), Quantitative Drug Design, Volume 4 of: Hansch, C., Sammes, P. G. and Taylor, J. (Eds.), Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds, Pergamon Press, Oxford, 589-643 (1990). [41]Kubinyi, H., Variable selection in QSAR studies.II. A high efficient combination of systematic search and evolution, Quant. Struct.-Act. Relat. 13, 393-401 (1994). [42]Leardi, R., Genetic Algorithms in Feature Selection in: Devillers, J. (Ed.), Genetic Algorithms in Molecular Modeling, Principles of QSAR and Drug Design Vol. 1, Academic Press, London, 67-86 (1996). [43]Lifson, S., Hagler, A.T., Dauber, P., Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals I: Carboxylic Acids, Amides, and the C=O…H Hydrogen Bonds. J. Am. Chem. Soc. 101, 5111-5120 (1979). [44]Lindgren, F., Geladi, P., Berglund, A., Sjostrom, M,. Wold, S., Interactive variable selection (IVS) for PLS. Part II: chemical applications. J. Chemom. 9, 331-342 (1995). [45]Martin, Y.C., Kim, K-H., Lin, C.T., In Advances in Quantitative Structure Property Relationships (Vol. I) (Charton, M., ed.), 1-52, JAI Press, (1996). [46]Martin, Y.C., Lin, C.T., In The Practice of Medicinal Chemistry (Wermuth, C.G., ed.), 459-483, Academic Press, (1996). [47]McFarland, J. W., Gans, D. J., Cluster significance analysis contrasted with three other quantitative structure-activity relationship methods. J. Med. Chem. 30, 46-49 (1987). [48]McFarland, J.W., Gans, D.J., On identifying likely determinants of biological activity in high dimensional QSAR problems, Quant. Struct.-Act. Relat. 13, 11-17 (1994). [49]Mühlenbein, H., Schlierkamp-Voosen, D., “Predictive Models for the Breeder Genetic Algorithm: I. Continuous Parameter Optimization”, Evolutionary Computation, Vol. 1, No. 1, 25-49, (1993). [50]Navia, M.A., Chaturvedi, P.R., Drug Discovery Today 1, 179-189 (1996). [51]Nicolotti, O., Gillet, V.J., Fleming, P.J., Green, D.V.S., Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs, J. Med. Chem. 45, 5069-5080 (2002). [52]Ortiz, A.R., Pisabarro, M.T., Gago, F., Wade, R.C., Prediction of Drug Binding Affinities by Comparative Binding Energy Analysis. J. Med. Chem. 38, 2681-2691 (1995). [53]Pearlman, R.S., Cbem. Design Automation News 8 (8), 3-15 (1993). [54]Perez, C., Pastor, M., Ortiz, A.R., Gago, F., Comparative Binding Energy Analysis of HIV-1 Protease Inhibitors: Incorporation of Solvent Effects and Validation as a Powerful Tool in Receptor-Based Drug Design. J. Med. Chem. 41, 836-852 (1998). [55]Pliska, V., Testa, B., van de Waterbeemd, H., eds Lipophilicity in Drug Action and Toxicology, VCH, (1996). [56]Ramsden, C.A., ed. Quantitative Drug Design (Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study & Therapeutic Application of Chemical Compounds) (Vol.4) (Hansch, C., Sammes, P.G. and Taylor, J.B., eds), Pergamon Press, (1990). [57]Rogers, D., Hopfinger, A.J., Applications of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 34, 854-866 (1994). [58]Rudolf, K., Marcia, M.C.F., A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors I. The chemometric approach. J. Mol. Graph. 21, 435-448 (2003). [59]Sadowski, J., Gasteiger, J., Cbem. Rev. 93, 2567-2781 (1993). [60]Schechter, I., Berger, A., On the Size of the Active Site in Proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157-162 (1967). [61]Selwood, D.L., Livingstone, D.J., Comley, J.C. W., O’Dowd, A.B., Hudson, A.T., Jackson, P., K.S. Jandu, V.S., Rose, Stables, J.N., Structure-activity relationships of antifilarial antimycin analogues: A multivariate pattern recognition study, J. Med. Chem., 33, 136-142 (1990) (data set downloaded from: http://www.disat.unimib.it/chm/Datasets.htm#Selwood). [62]So, S.S., Karplus, M., Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks, J. Med. Chem. 39, 1521-1530 (1996). [63]Stewart, J.J.P., MOPAC 93, Fujitsu Ltd., Tokyo Japan, (1993). [64]SYBYL/QSAR, Molecular Modelling Software, Tripos Inc., S. Hanley Road, St Louis, MO 63944, USA, (1699). [65]Thompson et al., Synthesis and Antiviral Activity of a Series of HIV-1 Protease Inhibitors with Functionality Tethered to the P1 or P1’ Phenyl Substituents: X-ray Crystal Structure Assisted Design. J. Med. Chem. 35, 1685-1701 (1992). [66]Topliss, J.G., Costello, R.J., J. Med. Chem. 15, 1066-1068 (1972). [67]van de Waterbeemd, H., ed,. Chemometric Methods in Molecular Design, VCH, (1995). [68]van de Waterbeemd, H., ed., Advanced Computer-Assisted Techniques in Drug Discovery, VCH, (1995). [69]van de Waterbeemd, H., ed., Chemometric Methods inMolecular Design, VCH, (1995). [70]van de Waterbeemd, H., Kansy, M., Chimia 46, 299-303 (1992). [71]Waller, C.L., Bradley, M.P., Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies. J. Chem. Inf. Comput. Sci. 39, 345-355 (1999). [72]Wanchana, S., Yamashita, F., Hashida, M., QSAR Analysis of Inhibition of Recombinant CYP 3A4 Activity by Structurally Diverse Compounds Using a Genetic Algorithm-Combined Partial Least Squares Method. Pharmaceutical Research 20 9, 1401-1408 (2003). [73]Wang, Y.X., Freedberg, D.I., Yamazaki, T., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Kiso, Y., Torchia, D.A., Solution NMR Evidence That the HIV-1 Protease Catalytic Aspartyl Groups Have Different Ionization States in the Complex Formed with the Asymmetric Drug KNI-272. Biochemistry 35, 9945-9950 (1996). [74]Wikel, J.H., Dow, E.R., The use of neural networks for variable selection in QSAR, Bioorg. Med. Chem. Lett. 3, 645-651 (1993). [75]Wold, S., Johansson, E., Cocchi, M., PLS - Partial least-squares projections to latent structures. In H. Kubinyi Ed., 3D QSAR in Drug Design; Theory, Methods and Applications. ESCOM Science Publishers, Leiden Holland, (1993). [76]Y.S. Prabhakar, A combinatorial approach to the variable selection in multiple linear regression: Analysis of Selwood et al. data set a case study, Quant. Struct.-Act. Relat. 22, 583-595 (2003).
|