跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家正
研究生(外文):Chia-Cheng Lin
論文名稱:日本種稻田魚鈉吸收及酸鹼平衡機制之分子生理學研究
論文名稱(外文):Molecular Physiological Study on Na+ uptake/acid-base regulation mechanisms in Japanese medaka (Oryzias latipes)
指導教授:黃鵬鵬黃鵬鵬引用關係
指導教授(外文):Pung-Pung Hwang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:49
中文關鍵詞:稻田魚鈉吸收酸鹼平衡滲透壓平衡離子平衡
外文關鍵詞:medakaionoregulationosmoregulationNHENa+ uptake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廣鹽性的硬骨魚類主要藉由調節其滲透壓的平衡來面對環境中的鹽度、離子濃度,及pH值變化。在先前的研究中,成魚的鰓部以及胚胎時期的表皮中,有一群特化的離子細胞,稱為富含粒線體細胞(Mitochondria-rich cells, MR cells),負責離子平衡機制。在斑馬魚的研究中發現,不同型態的離子細胞具有不同的運輸蛋白,以進行不同的離子之運輸;並且在胚胎發育過程中有轉錄因子會參與離子細胞的分化。然而,通道蛋白的調節功能,以及運輸機制的研究中還有許多未明瞭的議題。本篇的研究以日本種稻田魚做為模式來探討鈉吸收及酸鹼平衡機制。
鈉氫交換蛋白-2/3(Na+/H+ Exchanger 2/3, NHE2/3)和氫離子幫浦(H+-ATPase, HA)等運輸蛋白以及離子細胞相關轉錄因子(forkhead box I 3, FOXI3; glial cell missing 2, GCM2)的序列已選殖。且經由原位雜交與免疫染色結果得知,可利用鈉鉀幫浦(Na+/K+-ATPase)標定稻田魚所有的離子細胞,這些離子細胞分為兩群,一群表現氫離子幫浦、另一群表現鈉氫交換蛋白。利用即時定量聚合
Euryhaline teleosts have to cope with the osmotic and ionic gradients of aquatic environments with diverse salinities, ion compositions, and pH values. Previous studies suggested that mitochondria-rich (MR) cells are specialized ionocytes, which are the main site responsible for ion regulation mechanisms in fish gills and embryonic skin. However, there are still many unclear issues of how transporters are functioning in fish ion regulation mechanism. The present study used Japanese medaka as a model to examine the roles of the related ion transporters in fish Na+ uptake and acid/base balance mechanisms.
Three ion transporters (Na+/H+ exchanger 2/3, NHE2/3; and V-type H+-ATPase and two transcription factors (forkhead box transcription factor I 3, FOXI3; and glial cell missing 2, GCM2) related to ionocyte differentiation have been successfully cloned from Japanese medaka. Using double in situ hybridization/immunocytochemistry, Na+/K+-ATPase (NKA) and NHE were colocalized in MR cells, H+-ATPase (HA) was localized in a part of MR cells. In qRT-PCR experiments of adult medaka gills, after acclimation to acidic freshwater slc9a2 (NHE2), slc9a3 (NHE3) and atp6v1a (H+-ATPase) were up-regulated, while gcm2 was down-regulated; on the other hand, slc9a3, atp6v1a, and foxi3 were up-regulated during acclimation to low sodium water.
Taken together, NHE and HA may play some roles in sodium uptake/acid-base regulation pathways in medaka, and the 2 transcriptional factors, foxi3 and gcm2, may participate in the ionocyte differentiation pathway.
中文摘要........................................................................................................................1
Abstract..........................................................................................................................2
Introduction..................................................................................................................4
Mechanisms of sodium uptake and acid-base regulation in freshwater fish..................4
Comparisons of the ionocytes between species.............................................................5
Medaka as a model to study sodium uptake and acid-base regulation mechanisms......7
Aims of studies...............................................................................................................8
Materials and Methods..............................................................................................10
Experimental animals...................................................................................................10
Acclimation experiments..............................................................................................10
Embryos collection..............................................................................................11
Preparation of total RNA..............................................................................................11
Reverse transcription-RCR (RT-PCR) analysis............................................................12
Molecular cloning and sequencing analysis.................................................................13
Translational knockdown with antisense morpholino oligonucleotides (MO) ...........13
Quantitative reverse transcription-PCR (qRT-PCR)................................................... 14
Whole-mount in situ hybridization..............................................................................14
Whole-mount immunocytochemistry...........................................................................16
Statistical analysis........................................................................................................17
Results.........................................................................................................................18
Ion transporters..........................................................................................................18
A. Protein expression patterns of ion transporters on medaka embryos......................18
B. mRNA expression patterns of ion transporters on medaka embryos.......................19
C. Triple labeling of NKA, HA protein and slc9a3 mRNA on the medaka gill...........20
D. Phylogenetic analysis of medaka genes..................................................................20
E. Density of NHE3 cells in embryo acclimated to different Na+ concentration and acidic waters.................................................................................................................21
F. Effects of environmental pH and Na+ concentration on NHE2/3 and H+-ATPase mRNA expression in medaka gills...............................................................................21
Differentiation related transcriptional factors........................................................22
A. Expression of foxi3 and gcm2 on medaka embryos................................................22
B. The effects of Loss-of function experiments of foxi3 and gcm2 on NKA+ cells….22
C. Effects of environmental pH and Na+ concentration on foxi3 and gcm2 mRNA expression in medaka gills...........................................................................................23
Discussion....................................................................................................................24
References....................................................................................................................30
Tables............................................................................................................................34
Figures..........................................................................................................................36
Blomqvist, S. R., Vidarsson, H., Fitzgerald, S., Johansson, B. R., Ollerstam, A., Brown, R., Persson, A. E., Bergstrom, G. G. and Enerback, S. (2004). Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113, 1560-1570.
Chang, W. J., Horng, J. L., Yan, J. J., Hsiao, C. D. and Hwang, P. P. (2009). The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1192-1201.
Choe, K. P., Kato, A., Hirose, S., Plata, C., Sindic, A., Romero, M. F., Claiborne, J. B. and Evans, D. H. (2005). NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 289, R1520-1534.
Claiborne, J. B., Edwards, S. L. and Morrison-Shetlar, A. I. (2002). Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293, 302-319.
Edwards, S. L., Tse, C. M. and Toop, T. (1999). Immunolocalisation of NHE3-like immunoreactivity in the gills of the rainbow trout (Oncorhynchus mykiss) and the blue-throated wrasse (Pseudolabrus tetrious). J Anat 195 ( Pt 3), 465-469.
Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. and Hirose, S. (2007). Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292, R470-480.
Evans, D. H. (2008). Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295, R704-713.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Furutani-Seiki, M. and Wittbrodt, J. (2004). Medaka and zebrafish, an evolutionary twin study. Mech Dev 121, 629-637.
Galvez, F., Reid, S. D., Hawkings, G. and Goss, G. G. (2002). Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 282, R658-668.
Goss, G. G., Adamia, S. and Galvez, F. (2001). Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium. Am J Physiol Regul Integr Comp Physiol 281, R1718-1725.
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M. H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199-1212.
Hiroi, J., Kaneko, T., Uchida, K., Hasegawa, S. and Tanaka, M. (1998). Immunolocalization of Vacuolar-Type H+-ATPase in the Yolk-Sac Membrane of Tilapia (Oreochromis mossambicus) Larvae. Zoolog Sci 15, 447-453.
Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R. and Kaneko, T. (2005). Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J Exp Biol 208, 2023-2036.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. and Kaneko, T. (2008). Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599.
Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T. and Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292, R2068-2076.
Horng, J. L., Lin, L. Y. and Hwang, P. P. (2009). Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296, C682-692.
Hsiao, C. D., You, M. S., Guh, Y. J., Ma, M., Jiang, Y. J. and Hwang, P. P. (2007). A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One 2, e302.
Hwang, P. P. (2009). Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212, 1745-1752.
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497.
Ivanis, G., Esbaugh, A. J. and Perry, S. F. (2008). Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211, 2467-2477.
Kaneko, T., Shiraishi, K., Katoh, F., Hasegawa, S. and Hiroi, J. (2002). Chloride cells during early life stages of fish and their functional differentiation. Fish. Sci 68, 1-9.
Katoh, F., Hyodo, S. and Kaneko, T. (2003). Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J Exp Biol 206, 793-803.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-378.
Lin, T. Y., Liao, B. K., Horng, J. L., Yan, J. J., Hsiao, C. D. and Hwang, P. P. (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294, C1250-1260.
Parks, S. K., Tresguerres, M. and Goss, G. G. (2007). Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake. Am J Physiol Cell Physiol 292, C935-944.
Perry, S. F. and Gilmour, K. M. (2006). Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154, 199-215.
Perry, S. F., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky, M. and Thomas, S. L. (2003). Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zoolog A Comp Exp Biol 300, 53-62.
Piermarini, P. M. and Evans, D. H. (2001). Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J Exp Biol 204, 3251-3259.
Reis-Santos, P., McCormick, S. D. and Wilson, J. M. (2008). Ionoregulatory changes during metamorphosis and salinity exposure of juvenile sea lamprey (Petromyzon marinus L.). J Exp Biol 211, 978-988.
Vallon, V., Schwark, J. R., Richter, K. and Hropot, M. (2000). Role of Na+/H+ exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. Am J Physiol Renal Physiol 278, F375-379.
Wang, Y. F., Tseng, Y. C., Yan, J. J., Hiroi, J. and Hwang, P. P. (2009). Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1650-1660.
Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W. and Randall, D. J. (2000a). NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203, 2279-2296.
Wilson, J. M., Randall, D. J., Donowitz, M., Vogl, A. W. and Ip, A. K. (2000b). Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203, 2297-2310.
Wittbrodt, J., Shima, A. and Schartl, M. (2002). Medaka--a model organism from the far East. Nat Rev Genet 3, 53-64.
Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293, C1814-1823.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊