跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鼎翊
研究生(外文):Ting-Yi Lin
論文名稱:網路式異質型全方位多機器人之 智慧型編隊控制
論文名稱(外文):Intelligent Formation Control of Uncertain Networked Heterogeneous Omnidirectional Wheel Multi-robots
指導教授:蔡清池
口試委員:黃國勝余國瑞林惠勇黃旭志
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:分散式一致性編隊控制協同編隊控制異質型全方位多機器人遞迴二型模糊類神經網路
外文關鍵詞:distributed consensus formation controlcooperative formation controlheterogeneous omnidirectional wheel robots (HOWRs)recurrent type-2 fuzzy neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文對於無線網路連結的多異質三輪或四輪麥卡輪型機器人系統,提出分散式智慧型協同編隊控制之方法學與其實作技術。經由簡單地描述多機器人編隊系統、兩種異質輪型機器人的運動學與動力學模型與Wi-Fi結構拓樸後,兩種分散式領導跟隨架構之智慧型協同編隊控制方法被提出,以達成多機器人隊形保持與協同追蹤。第一種控制方法為結合遞迴二型模糊類神經網路(recurrent interval type-2 fuzzy neural networks)、協同追蹤、適應倒逆步(adaptive backstepping)與順滑模式控制之智慧型協同分散式編隊控制法則。第二種控制方法為整合輸出遞迴二型模糊類神經網路(output recurrent interval type-2 fuzzy neural networks)、Lyapunov穩定度分析與協同追蹤控制之智慧型指數穩定分散協同編隊控制律。上述兩種編隊控制法則之可行性及有效性可利用電腦模擬與實際實驗來加以驗證。本文所提及之方法對於從事多機器人編隊控制的研究者與工程人員而言,可提供實而有用的參考價值。
This thesis proposes methodologies and techniques for distributed consensus formation control of uncertain networked heterogeneous multiple three-wheeled or four-wheeled Mecanum omnidirectional robots (MWORs). After brief descriptions of formation control system, kinematic and dynamic models of MWORs and Wi-Fi communication topology, two distributed leader-follower consensus formation control methods are proposed to achieve formation keeping and consensus tracking. One is that an intelligent consensus cooperative formation control law is derived by combining recurrent interval type-2 fuzzy neural networks (RIT2FNNs), adaptive backstepping, sliding-mode control and consensus tracking. The other is that an intelligent exponential consensus distributed formation control law with collision and obstacle avoidance is established by integrating online learning of output recurrent interval type-2 fuzzy neural networks (ORIT2FNNs), consensus tracking, and Lyapunov analytical techniques. The effectiveness and merits of the two proposed control laws are examined and verified through several computer simulations and experimental results on the built formation control system. The aforementioned methods and system techniques may provide solid and useful references for researchers and engineers working for multi-robot or multi-agent systems.
摘 要 i
Abstract ii
Contents iii
List of Figures vi
List of Tables x
Nomenclature xi
List of Abbreviations xii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Review 3
1.2.1 Related Work on Cooperative Formation Control 3
1.2.2 Related Work on Heterogeneous Omnidirectional Wheel Robots 4
1.2.3 Related Work on RIT2FNN 4
1.2.4 Related Work on ORIT2FNN 5
1.2.5 Related Work on Backstepping and Sliding-Mode Approach 5
1.3 Motivation and Objectives 6
1.4 Main Contributions 7
1.5 Thesis Organization 8
Chapter 2 Formation System Design and Implementation 9
2.1 Introduction 9
2.2 Formation System Structure 10
2.2.1 Graph of multi-HOWR Formation System 10
2.2.2 Graph of HOWR in Formation 10
2.3 Description of the HOWR in formation 12
2.3.1 Mechatronic Structure of HOWR 12
2.3.2 ARM-based Controller 15
2.3.3 Single-Board Computer 16
2.3.4 Dynamixel MX-64AR Servomotors 18
2.3.5 Encoders and Odometry 19
2.3.6 Omnidirectional Wheels 20
2.3.7 TTL-to-RS485 Signal Board 21
2.3.8 Power supply for single HOWR 23
2.4 Modeling a Multi-HOWR System 25
2.5 Problem Formulations 26
2.6 Kinematic Formation Control 28
2.7 Experimental Results and Discussion 31
2.7.1 Experimental Results of Odometry 32
2.7.2 Experimental Results of the Kinematic Formation Control 41
2.7.3 Experimental Results of the Obstacle Detection 43
2.8 Concluding Remarks 45
Chapter 3 Intelligent Adaptive Backstepping Cooperative Formation Control Using RIT2FNN 46
3.1 Introduction 46
3.2 Dynamic Model of the Unified HOWR 46
3.2.1 Modeling a Car-Like Four-Wheeled MWOR 47
3.2.2 Modeling a Three-wheeled SWOR 49
3.23 Modeling a HOWR in a Unified Framework 51
3.3 RIT2FNN Function Approximation 52
3.4 Intelligent Adaptive Backstepping Cooperative Formation Control Using RIT2FNN 56
3.5 Simulation Results and Discussion 62
3.6 Experimental Results and Discussion 65
3.7 Concluding Remarks 68

Chapter 4 Intelligent Distributed Exponential Consensus Formation Control Using ORIT2NN 69
4.1 Introduction 69
4.2 Dynamic Model of the Unified HOWR 69
4.3 ORIT2FNN Function Approximation 70
4.4 Intelligent Distributed Exponential Consensus Formation Control Using ORIT2NN 72
4.5 Unified Collision and Obstacle Avoidance 76
4.5.1 Unified Collision and Obstacle Avoidance 76
4.5.2 Stability Analysis of the Formation Control Law with Collision and Obstacle Avoidance 78
4.6 Simulation Results and Discussion 80
4.7 Experimental Results and Discussion 84
4.8 Concluding Remarks 86
Chapter 5 Conclusions and Recommendations 88
5.1 Conclusions 88
5.2 Recommendations 90
References 91
[1]R. Murray, “Recent research in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement, and Control, Vol. 129, pp. 571-583, 2007.
[2]C. C. Tsai, H. L. Wu, and Y. R. Lee, “Intelligent adaptive motion controller design for Mecanum-wheeled omnidirectional robots with parameter variations,’’ Intern. Journal of Nonlinear Sciences and Nonlinear Simulation, Vol. 11, supplement issue, pp. 091-95, 2010.
[3]H. L. Wu, C. C. Tsai, Y. S. Chen, and F. C. Tai, “Integral sliding-mode formation control for uncertain networked Mecanum-wheeled omnidirectional platforms using recurrent fuzzy wavelet neural Networks,” in Proc. of 2016 Intern. Conf. on Advanced Robotics and Intelligent Systems (ARIS 2016), Taipei Nangang Exhibition Center, Taipei, Taiwan, August 31-Sptember 2, 2016.
[4]C. K. Chan and C. C. Tsai, “intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball robot with a four-motor inverse-mouse ball drive,” in Proc. of SICE 2012 Annual conference, Akita, Japan, pp. 1281 – 1286, 20-23 August, 2012.
[5]F. C. Tai , C. C. Tsai, and T. Y. Lin, “Hierarchical sliding-mode formation control using for RIT2FNN uncertain networked multiple ball-riding robots,” in Proc. of ARIS 2016, Taipei Nangang Exhibition Center, Taipei, Taiwan, Aug. 31-Sep. 2, 2016.
[6]H. K. Khalil, Nonlinear systems, 2nd ed., Prentice Hall, 1996.
[7]C. L. Philip Chen, C.-E Zen, and T. Du, “Fuzzy observed-based adaptive consensus tracking control for second-order multi-agent systems with heterogeneous nonlinear dynamics,” IEEE Transactions on Fuzzy Systems, 2016.
[8]C. C. Tsai, H. L. Wu, F. C. Tai, and Y. S. Chen, “Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multirobot systems using fuzzy wavelet neural networks,” Intern. Journal of Fuzzy Systems, April, 2016.
[9]C. C. Tsai, Y. S. Chen, F. C Tai, and H. L. Wu, “Intelligent backstepping sliding-mode consensus formation control for uncertain heterogeneous Swedish-wheeled omnidirectional multirobots,” in Proc. of 2016 IEEE Intern. Conf. on System Science and Eng., National Chi-Nan University, Puli, Nantou, 7-9 July, 2016.
[10]N. Tlale and M. Villiers, “ Kinematics and dynamics modelling of a Mecanum wheeled mobile robot,” 15th International conference on Mechatronics and Machine Vision in Practice (M2VIP08), 2-4 Dec 2008, Auckland,New-Zealand.
[11]C. C. Tsai, H. L. Wu, F. C. Tai, and Y. S. Chen, “Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multirobot systems using fuzzy wavelet neural networks,” Intern. Journal of Fuzzy Systems, April, 2016.
[12]T. Y. Lin, C. C. Tsai, and F. C. Tai, “Intelligent adaptive backstepping cooperative formation control using RIT2FNN for uncertain networked heterogeneous Mecanum-wheeled omnidirectional multirobots,” Proceedings of 2017 National Symposium on System Science and Engineering, National Taiwan Normal University, Taipei, 19-20 May, 2017.
[13]F. Y. Chang and C. H. Lee, “Interval type-2 recurrent fuzzy neural system with asymmetric membership functions for chaotic system identification”, SICE Annual Conference 2010, August 18-21, 2010, The Grand Hotel, Taipei, Taiwan.
[14]Y. C. Wang, C. J. Chien, and C. C Teng, “Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network.” IEEE Transactions on Fuzzy System, Man, and Cybernetics—Part B: Cybernetics, Vol. 34, No. 3, June 2004.
[15]C. F. Juang, R. B. Haung, and Y. Y Lin, “A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing,” IEEE Transactions on Fuzzy Systems, Vol. 17, No.5, Transactions on Fuzzy Systems, October 2009.
[16]C. Chen, C.-E Zen, and T. Du, “Fuzzy observed-based adaptive consensus tracking control for second-order multi-agent systems with heterogeneous nonlinear dynamics,” IEEE Transactions on Fuzzy Systems, Vol. 24, No. 4, pp. 906 - 915, August 2016.
[17]C. C. Tsai, H. L. Wu, and K. H. Chuang, “Backstepping aggregated sliding-Mode motion control for automatic 3D overhead cranes,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.849-854, 2012.
[18]J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of noholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, 1999.
[19]Y. Yang, Y. Yan, Z. Zhu and X. Huang, “Chattering-free sliding-mode control for strict-feedback nonlinear system using backstepping technique,” 2017 International Conference on Mechanical, System and Control Engineering, College of Aerospace Science and Technology, National University of Defense and Technology Changsha, China, 2017.
[20]M. N. Aydin and R. Coban “Second-Order Sliding Mode Control Design and Experimental Application to a Servo Motor,” 2017 International Conference on Mechanical, System and Control Engineering, Computer Engineering Department Cukurova University Adana, Turkey, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top