跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈幸宜
論文名稱:認購權證定價錯價分析-權證市場與現貨市場互動效果觀點
論文名稱(外文):The Pricing Error Effects of Warrants-A new prospects of Interaction Mechanism between Warrant and Stock Markets
指導教授:高慈敏高慈敏引用關係
指導教授(外文):Kao, Tzu-Min
學位類別:碩士
校院名稱:銘傳大學
系所名稱:財務金融學系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:主題編目分類法歐式選擇權美式選擇權認購權證有限差分法偏微分方程式伊籐微分
外文關鍵詞:European OptionAmerican OptionWarrantFinite Different MethodPartial Differential EquationIto Differential
相關次數:
  • 被引用被引用:5
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:4
本研究旨在探討現貨市場與權證市場之互動是否產生權證定價之錯價效果,模型則修正Black-Scholes(1973)之股價變動方程式,分別建立價格效果與波動性效果模型,藉由數值分析模擬理論價格,探討互動效果是否降低系統性誤差。
經由本文研究發現,根據九支權證之分析效果與傳統Black-Scholes模型比較後發現,當權證市場與現貨市場存在互動效果時,現貨價格為價外與價平時溢價效果最大,但溢價效果隨著現貨價格價內程度加深,溢價效果隨之降低。另外,間斷複製所產生之誤差雖會影響上述推論,但權證市場與現貨市場存在互動效果所產生之溢價效果依然存在。
若就互動效果所形成不同錯價效果成因加以分析,均可解釋為何產生溢價現象。但發現上述效果均隨價內、價平與價外效果之不同而不同。其主因為透過不同之影響管道,所修正現貨波動幅度,會透過Gamma產生錯價效果。而Gamma值在價外至價平之間較大,故進而溢價效果也較顯著。
This research focus on the devalue facts of warrants, and try to explain that in a new prospects of interaction mechanism between warrant and stock markets. In order to describe such mechanism, we have modified the partial difference function of Black and Scholes (1973). Finite difference method was used to simulate the new models, and compare the difference with traditional model.
We found that the simulation results of nine samples from warrant market can support the prospects of interaction effects. New model can explain the pricing error facts. But it depend on stock price is in-the-money, at-the-money
or out-the-money. We found that stock price was out-the-money, or it changed to at-the-money, new model performed better that traditional model. But stock price changed to in-the-money, the performance is weaker. By the way, discrete replication problem was matter. But after excluding the discrete replication effects, interaction mechanism still can explain the facts.
If we discuss different interaction mechanism, such as price interaction mechanism and volatility interaction mechanism, we will have the same result. To explain that, all the interaction effects have modified volatility by the Gamma value. Gamma value is higher in at-the-money situation. That is why stock price is at-the-money, modified model can explain better than traditional model.
第一章 緒 論 1
第一節 研究背景與目的 1
第二節 論文架構與研究流程 3
第二章 文獻回顧 4
第一節 傳統選擇權評價模型及其修正 4
第二節 美式選擇權定價模型 7
第三節 數值分析法之介紹 9
第四節 實證文獻 14
第三章 研究方法 18
第一節 研究模型 18
第二節 數值分析方法 20
第三節 資料來源及參數估計 24
第四章 實證結果 29
第一節 參數分析 29
第二節 模型實證分析 35
第五章 結論與建議 39
第一節 結論 39
第二節 未來研究方向 40
參考文獻 41
附錄A:價格效果模型 44
附錄B:價格與波動性效果模型 47
附錄C:權證與現貨之因果檢定 50
附錄D:權證在不同模型下的價格差異值 51
附錄E:權證模擬結果 65
李健瑋(1998),「認購權證評價模型錯價之探討」,國立中正大學財務金融所碩士論文。
周行一、李志宏、李怡宗、劉玉珍(1999),「台灣證券交易所認購權證價格與標的股票關係之研究」,http://www.tse.com.tw/statistics/reportF.htm
林冠秀(2000),「具交易成本之選擇權報酬率波動性估計」,台北大學統計學系碩士論文。
邱紀尊(2000),「美式選擇權之數值演算法」,輔仁大學金融研究所碩士論文
施冠宇(2001),「衍生性商品數值評價樹狀圖法」,國立交通大學應用數學研究所碩士論文。
曹金泉(1998),「隨機波動度下選擇權評價理論的應用---以台灣認購權證為例」,國立政治大學金融研究所碩士論文。
陳皇任(1997),「台灣認購權證評價與避險操作之研究」,國立臺灣大學財務金融研究所碩士論文。
楊玉菁(2001),「台灣個股型認購權證評價之研究」,彰化師範大學商業教育學系碩士論文。
趙念中(2001),「Black-Scholes評價模式在台灣認購權證市場錯價之實證」,朝陽科技大學財務金融系碩士論文。
蔡立光(1998),「台灣上市認購權證定價模型與避險策略之研究」,國立中央大學財務管理研究所碩士論文。
李存修(1998),台灣認購權證個案集,智勝文化。
陳松男(2002),金融工程學:金融商品創新與選擇權理論,華泰文化。
陳威光(2002),選擇權-理論、實務與應用,智勝文化。
滑明曙(1997),選擇權估價理論,華泰文化。
鐘惠民、吳壽山、周賓凰、范懷文(2002),財金計量,雙葉書廊。
Barone-Adesi, Giovanni, and Robert E. Whaley (1987), “Efficient Analytic Approximation of American Option Values,” Journal of Finance, Vol.42, No.2, pp.301-320.
Beckers, S. (1980), “The Constant Elasticity of Variance Model and Its Implications For Option Pricing,” Journal of Finance, Vol.35, No.3, pp.661-673.
Black, F., and M. Scholes (1972), “The Valuation of Option Contracts and a Test of Market Efficiency,” Journal of Finance, Vol.27, pp.399-417.
Black, F., and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol.81, pp.637-654
Black, F. (1975), “Face and Fantasy in the Use of Option,” Financial Analysts Journal, Vol.31, pp.36-41, 61-72.
Boyle, P. P. (1988), “A Lattice Framework for Options with Two State Variables,” Journal of Financial and Quantitative Analysis, Vol.23, pp.1-12.
Cox, J.C., and S.A. Ross (1976), “The Valuation of Options for Alternative Stochastic Process,” Journal of Financial Economics, Vol.3, pp.145-166.
Cox, J.C., S.A. Ross, and M. Rubinstein (1979), “Option Pricing:A Simplified Approach,” Journal of Financial Economics, Vol.7, pp.229-263.
Geske, Robert (1979), “The Valuation of Compound Options,” Journal of Financial Economics, Vol.7, pp.63-81.
Kao, Tzu-Min (2003), “Hedge Risk and Option Pricing Band,” preprint.
Kremer, J. W., and R. L. Roenfeldt (1992), “Warrant Pricing:Jump-Diffusion vs. Black-Scholes,” Journal of finance and Quantitative Analysis, Vol. 28, No. 2, pp.255-273.
Lauterbach, B., and P. Schultz (1990), “Pricing Warrants:An Empirical Study of the Black-Scholes Model and Its Alternatives,” Journal of Finance, Vol.45, pp.1181-1209.
Leland, H. E. (1985), “Option Pricing and Replication with Transaction Costs”, Journal of Finance, Vol.40, pp.1283-1301
Long, D. M., and D. T. Officer (1997), “The Relation between Option Mispricing and Volume in the Black-Scholes Option Model,” Journal of Financial Research, Vol.20, pp.1-20.
Lu, Chung-Chin (2002), “A Modified Black-Scholes Pricing Model”, preprint.
MacBeth, J.D, and L.J. Merville(1979), “An Empirical Examination of the Black-Scholes Call Option Pricing Model,” Journal of Finance, Vol.34, pp.1173-1186
Merton, R.C. (1973), “The Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, ppVol.4, pp.141-183.
Merton, R.C (1976), “Option Pricing when Underlying Stock Return are Discontinuous,” Journal of Financial Economics, Vol.3, pp.125-144.
Noreen E., and M. Wolfson (1981), “Equilibrium Warrant Pricing Models and Accounting for Executive Stock Options,” Journal of Accounting Research, Vol.19, pp.384-398.
Sterk, William E. (1983), “Comparative Performance of the Black-Scholes and Roll-Geske-Whaley Option Pricing Models,” Journal of Financial and Quantitative Analysis, Vol.18, No.3, pp.345-354.
Whaley, Robert E. (1982), “Valuation of American Call Option on Dividend-Paying Stocks,” Journal of Financial Economics, Vol.10, pp.29-58.
Neftci, S.N. (2000), An Introduction to the Mathematics of Financial Derivatives, 2nd edition, Academic Press.
Tavella, D and Randall, C (2000), Pricing Financial Instruments-THE FINITE DIFFERECNCE METHOD, John Wiley and Sons, N.Y., N.Y.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊