跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宏濱
研究生(外文):Hong-Bin Zhang
論文名稱:磁控濺鍍製備極紫外光高反射率多層膜反射鏡
論文名稱(外文):High-Reflectance Multilayer Mirrors for Extreme Ultraviolet Lithography Using Magnetron Sputter-deposition
指導教授:江政忠
指導教授(外文):Cheng-Chang Jaing
口試委員:李昭德江政忠秦弘毅
口試委員(外文):Chao-Te LeeCheng-Chang JaingHung-I Chin
口試日期:2015-07-01
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:50
中文關鍵詞:極紫外光
外文關鍵詞:Extreme Ultra-Violet Lithography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討極紫外光微影(Extreme Ultra-Violet Lithography, EUVL)高反射率多層膜製作、設計與單層膜特性之分析,製作高反射率鉬矽多層膜反射鏡與量測極紫外光(13.5nm)波段之反射率並在其最上層設計一層保護層(capping layer),經由Essential Macleod程式來進行設計及特性分析。
本研究使用國研院儀器實驗中心(Instrument Technology Research Center, ITRC)磁控濺鍍系統製作鉬矽多層膜反射鏡,進行室溫及低溫製程,利用國家同步輻射究中心(National Synchrotron Radiation Center, NSRRC)的極紫外光反射儀量測多層膜反射率,所有設計的多層膜反射鏡上均製作一層銣元素保護層,由軟體設計可以得知入射角20∘的反射率可達到73%。經由量測結果得知室溫(25℃)製作鉬矽多層膜反射鏡在入射角20∘可達50%的反射率,低溫(15℃)製程時反射鏡入射角20∘可達47%的反射率。並且運用原子力顯微鏡(Atomic Force Microscopy, AFM)、穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)、掃描式電子顯微鏡(Structural Equation Modeling, SEM)及X射線光電子能譜(X-ray Photoemission Spectroscopy, XPS)進行樣品的結構觀察及分析。
經由AFM量測發現樣品為一個均勻且50v Dc-bias輔助偏壓轟擊薄膜,樣品平均粗糙度可以低於0.15nm。藉由TEM及XPS發現覆蓋層銣-矽、矽-鉬、鉬-矽之間都有中介層的形成,中介層Mo on Si厚度為0.45nm,然而Si on Mo中介層厚度由0.9nm上升到1.35nm,銣-矽、矽-鉬中介層厚度增加的原因是在濺鍍期間基板熱堆積的影響所導致。另外本研究製作出鉬膜、銣膜為多晶結構,矽膜為非晶結構。

In this study, we designed and simulated EUV multilayer mirrors for high reflectance. We fabricated the multilayer mirrors and a capping layer on the top of the multilayer mirrors. The commercial Essential Macleod software was used for our designs and simulations. A Mo/Si multilayer was fabricated by the magnetic sputter system with low and room temperature at Instrument Technology Research Center (ITRC), and their reflectance was measured by the Mega reflector at National Synchrotron Radiation Center (NSRRC). Base on simulations, the reflectance of our designed multilayer mirror was 73% at the incident angle was 20∘. The reflectance of our fabricated sample at the incident angle of 20∘was 50% with 40 stacks of films at the deposition temperature of room temperature and was 47% at the deposition temperature of low temperature. Finally, we applied AFM, TEM, SEM, and XPS equipments to analyze roughness, structure, and atomic composition of the multilayer mirrors.
The AFM measurements showed the uniform morphology with a very low surface roughness value under 0.15 nm with 50V dc-bias assisting. It was found that the Mo-on-Si, Si-on-Mo, and Ru/Si interface layers were discriminated by HRTEM, and XPS. The Mo-on-Si interface layer was 0.45 nm. However, the Si-on-Mo interface layer was increased with thickness increased from 0.9 nm to 1.35 nm. The cause of Mo/Si and Ru/Si interfaces form was attributed to the substrate temperature was increased during sputtering.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3研究動機與目的 5
1.4論文架構 5
第二章 基本理論 6
2.1電磁波之傳播 6
2.2膜矩陣 9
2.2.1 T.E.和T.M.偏振 9
2.2.2反射與穿透係數 9
2.2.3 X光與極紫外光薄膜性質 15
2.3極紫外光多層膜反射鏡 17
2.3.1設計多層結構的原理 17
2.3.2薄膜材料的光學常數 18
2.3.3多層膜反射鏡介面摻雜和覆蓋層 18
2.4多層膜沉積技術 19
2.4.1濺鍍原理 19
2.4.2電漿之理論 20
2.4.3磁控濺鍍原理 20
2.4.4反應性濺鍍 21
2.4.5濺鍍電源供應器種類介紹 22
2.5極紫外光多層膜反射儀之理論 24
2.5.1同步輻射(Synchrotron Radiation) 24
2.5.2 LSGM (Low-energy Spherical Grating Monochromator)光束線 25
第三章 實驗方法與流程 26
3.1實驗架構以及流程 26
3.2設計及模擬 27
3.3濺鍍系統 29
3.4極紫外光多層膜反射鏡製作 30
3.5量測與分析工具 30
3.5.1 EUV反射儀 30
3.5.2原子力顯微鏡(Atomic Force Microscopy, AFM) 32
3.5.3X-ray繞射儀(X-ray Diffractometer, XRD) 33
3.5.4 X-ray光電子能譜(X-ray Photoemission Spectroscopy, XPS) 34
3.5.5掃描式電子顯微鏡(Structural Equation Modeling, SEM) 34
3.5.6穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 35
第四章 實驗結果與討論 36
4.1鉬、矽及銣單層膜製程參數 36
4.1.1工作壓力 36
4.1.2 Dc-Bias輔助偏壓 37
4.1.3覆蓋層銣膜單層膜 38
4.2極紫外光多層膜反射鏡製程 40
4.3極紫外光反射率量測 40
4.4微結構分析 42
4.4.1原子力顯微鏡量測(AFM) 42
4.4.2 X-ray光電子能譜(XPS) 44
4.4.3穿透式電子顯微鏡(TEM) 45
第五章 結論與未來研究方向 48
5.1結論 48
5.2未來研究方向 48
參考文獻 50

【1】G.E. Moore, “Progress in Digital Integreated Electronics,” IEDM Tech. Dig., 1975, pp.11-13.
【2】S.M. Sze and M.K. Lee, “ Semiconductor Devices: Physics and Technology.” John Wiley, Sons Inec, 2012.
【3】C. Wagner and N Harned, “Lithography gets extreme,” Nat. Photonics, vol.4, Jan 2010
【4】O. Wood, C-S.Koay, K. Petrillo, “Integration of EUV lithography in the fabrication of 22-nm node devices,” Proc.Of SPIE, vol. 7271,no. 727104, 2009, pp. 1-9.
【5】H. Kinoshita, T. Kaneko, H. Takei, N. Takeuchi, and S. Ishhara, .Study on x-ray reduction projection lithography,. presented at the 47th Autumn Meeting of the Jpn. Soc. of Appl. Phys., 1986, pp. 28-ZF-15.
【6】B. J. Lin, “Linits of optical lithography and status of EUV,” IEDM, 2009
【7】B. J. Lin, “Sober view on extreme ultraviolet lithography,” J. Microlith., Microfab., Microsyst. 53, 033005 Jul-Sep 2006
【8】E. Spiller, “Low-loss reflection coatings using absorbing materials,.”Appl. Phys. Lett., vol. 20, no.9, 1972, pp. 365-367.
【9】D. A. Tichenor, et al., “10x reduction imaging at 13.4nm,”OSA Proc., vol. 23, 1994, pp. 89-97.
【10】C. W. Gwyna, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B, 1998.
【11】S. D. Berger and J. M. Gibson, “New approach to projection-electron lithography with demonstrated 0.1 micron linewidth,” Appl. Phys. Lett., vol. 57, 1990, pp. 153-155.
【12】 R. Jonckheere, G.F. Lorusso, A. M. Goethals, K. Ronse, J. Hermans, R. D. Ruyter, “Assessment of EUV reticle blank availability enabling the use of EUV tools today and in the future,” Mask and Lithography Conference (EMLC), Grenoble, France, 2007.
【13】V. Banine and R. Moors, “Plasma sources for EUV lithography exposure tools.” J. Phys. D: Appl. Phys. 37, 2004, pp. 3207~3212.
【14】J. Jonkers, ”High power extreme ultra-violet(EUV)light sources for future lithography,” Plasma Sources Sci. Technol. 15, 2006, pp. 8~16.
【15】F.Y. Liu, “Reflectance Improvement of Mo/Si Multilayer Mirrors and Masks for Extreme Ultra Violet Lithography,” M. S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2012.
【16】H.A. Macloed, “Thin-film optical filters,” Institute of Physics Publishing, 3rd Ed., 1999.
【17】C. C. Lee, “Thin Film Optics and Coating Technology,” Yi Hsien Publishing Co., 5th Ed., 2006
【18】Henke B.L., Gullikson E.M. and Davis J.C., “X-ray interactions:photoabsorption, scattering, transmission, and reflection at E=50-30,000Ev, Z=1-92”, 1993, Atomic Data and Nuclear Data Table 54, 181-342.
【20】Center for X-ray Optics, http://www.cxro.lbl.gov.
【21】Spiller E.,”Low-loss reflection coating using absorbing materials”, Appl. Phys. Lett., 1972, pp. 20, pp. 365-367.
【22】E. Spiller, “Soft X-Ray Optics,” SPIE Optical Engineering Press,.ch. 8, 1994.
【23】E. Spiller, “Low-loss re.ection coatings using absorbing materials,” Appl. Phys. Lett., vol. 20, no.9, 1972, pp. 365-367.
【24】A.V. Vinogradov and B. Y. Zeldovich, “X-ray and far UV multilayer mirrors: principles and possibilities,” Appl. Opt., vol. 16, 1977, pp. 89-93.
【25】R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet soft- x-ray region,” Appl. Opt., vol. 36, 1997, pp. 5499.5507.
【26】R. Sou and E. M. Gullikson, “Absolute photoabsorption measurements of molybdenum in the range 60 to 930 eV for optical constant determination,” Appl. Opt., vol. 37, 1998, pp. 1713-1719.
【27】U. Schlegel, “Determination of the optical constants of Ruthenium in the EUV and soft x-ray region using synchrotron radiation,” Diploma thesis, Technische Fachhochschule Berlin, 2000.
【28】X-Ray and Gamma-Ray Data, http://physics.nist.gov/PhysRefData/contentsxray.html.
【29】Elastic Photon-Atom Scattering, http://physci.llnl.gov/Research/scattering/.
【30】A. K. Petford-Long, M. B. Stearns, C.-H. Chang, S. R. Nutt, D. G. Stearns, N. M.Ceglio, and A. M. Hawryluk,”High-resolution electron microscopy study of x-raymultilayer structures,”J. Appl. Phys., vol. 61, 1987, pp. 1422-1428.
【31】K. Holloway, K. Ba Do, and R. Sinclair, “Interfacial reactions on annealingmolybdenum-silicon multilayer,”J. Appl. Phys., vol. 65, 1989, p.p. 474.480.
【32】S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko,O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov and E. N. Zubarev, “Interlayertransition zones in Mo/Si superlattices,” J. Appl. Phys., vol. 92, 2002, p.p. 1216-1220.
【33】S. Braun, H. Mai, M. Moss, R. Scholz, and A. Leson, “Mo/Si multilayer withdifferent barrier layers for applications as extreme ultraviolet mirrors,”Jpn. J. Appl.Phys., vol. 41, 2002, p.p. 4074-4081.
【34】I. Nedelcu, R. W. E. van de Kruijs, A. E. Yakshin, and F. Bijkerk, “Microstructureof Mo/Si multilayer with boroncarbide diffusion barrier layers,”Appl. Opt., vol. 48,p.p. 155-160, 2009.
【35】S. Bajt, J. B. Alameda, and etc, .”Improved reflectance and stability of Mo-Simultilayer, .Opt. Eng., vol. 41, no.8, 2002, pp. 1797-1804.
【36】S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski,E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance ofcapping layers for extreme-ultraviolet multilayer mirrors, “Appl. Opt. vol. 42 no.28, Oct 2003, pp. 5750-5758.
【37】P. Willmott, “An introduction to synchrotron radiation,”John Wiley & Sons Inc.,1stEd., 2011.
【38】National Synchrotron Radiation Center website, http://www.nsrrc.org.tw/
【39】LSGM website,http://140.110.203.42/manage/fck_fileimage/file/bldoc/08ALSGM.htm
【40】H.-W. Fu, Grace H. Ho, L.-J. Huang, C.-F.Chang, S.-W.Lin, S.-W.Luo, F.-H.Kang, Y.-H.Shih, H.-S.Fung, and B.-Y. Shew, “Compact and ultrahigh-vacuumreflectometer for EUVLapplications,”International Workshop on EUVL (EUVLworkshop), Oahu, Hawaii, July 2009.
【41】F.W. Fified and D. Kealey, “Principles and Practice of Analytical Chemistry,”2nd Edition, International Textbook Co Ltd, (1983)
【42】T. W. Baebee, Jr., “Multilayers for x-ray optics,”Opt. Eng., vol. 25, no. 8,898, 1986.
【43】M. Trost, S. Schroder, T. Feigi, A. Duparre, and A. Tunnermann, “Influence ofthe substrate finish and thin film roughness on the optical performance of Mo/Simultilayers,”Appl. Opt., vol. 50, 2011, pp. 148-153.
【44】Spiller E., “Soft X-ray Optics”, Chap.2.7.8, SPIE Optical Engineering Press, 1994, Washington.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top