跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲瑋
研究生(外文):Jhang, Jhe-Wei
論文名稱:具有降低電磁干擾之單電感雙輸出升降壓穩壓器設計
論文名稱(外文):Design of a Single-Inductor Dual-Output Buck-Boost Regulator with Reduced Electromagnetic Interference
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Yeh, Mei-Ling
口試委員:林嘉洤黃淑絹葉美玲
口試委員(外文):Lin, Jia-ChuanHuang, Shu-ChuanYeh, Mei-Ling
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:單電感雙輸出升降壓穩壓器電磁干擾切換式
外文關鍵詞:Single-Inductor Dual-OutputBuck-Boost RegulatorElectromagnetic InterferenceSwitching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今的科技發展非常迅速,尤其是在可攜式電子產品上,進步得非常快速,而現在的可攜式產品越做越小,功能越來越強大,必須將各種功能的模組整合在一起,這些模組會因為功能不同而所需的電壓也不同,因此要供應相應的電源是很重要的一門研究課題。本論文採用國家晶片中心(CIC)所提供的TSMC 0.35um Mixed-Signal 2P4M Polycide 3.3/5V製程技術來設計並實現單電感雙輸出升降壓穩壓器的研究。在本論文的整體系統運作上採用連續導通的控制方法,用電壓模式來操作電路,在系統的規格上,額定的輸入電壓為3.4V,輸出的電壓在升壓端穩定於5V,負載電流範圍為150mA~200mA,降壓端穩定於1.8V,負載電流範圍為50mA~100mA,電路的操作頻率為715KHz~ 830KHz,在整體系統的效率上最高可達89.6%。

在可攜式產品中,除了電源管理外,還有工作的時脈也非常重要,隨著時脈的不同,會對電路造成電磁干擾(EMI, Electromagnetic Interference),此干擾會影響到電路的穩定度問題,而現今有許多解決此干擾的解決方法,而本論文在研究切換式升降壓穩壓器上,針對電磁干擾的研究,在此採用展頻(Spread Spectrum)的方法,藉由展頻的技術,可藉由將整體電路的時脈訊號作改變,使輸出頻譜的能量分散於可控制的頻率範圍內,且降低各諧波在頻譜上的峰值能量。此解決方法,在電路上實行簡單,又能降低整體的消耗功率及減少晶片上的使用面積,在本論文中,可降低電磁干擾的範圍為8dB~20dB左右。
Today’s technology is developing very rapidly, especially the portable electronic products progressing very fast. Now the portable products get smaller and more powerful, various functional modules must be integrated. These functional modules will be required different voltages because of the different functions. Therefore, the corresponding power supply is a very important research topic. This thesis designs and implements a single-inductor dual-output Buck-Boost regulator using TSMC 0.35um Mixed-Signal 2P4M Polycide 3.3/5V process provided by National Chip Implementation Center (CIC). The overall operation of the system uses continuous conduction mode and voltage mode to control the circuits. On the system specifications, the rated input voltage is 3.4V, the output voltage of the boost end stables at 5V, and the load current range is from 150mA to 200mA, the buck end stables at 1.8V, the load current range is from 50mA to 100mA, the modulation range of switching frequency is between 715KHz and 830KHz, and the maximum system efficiency can reach 89.6%.

In portable products, in addition to power management, the working clock is also very important. When the clock is different, the circuit will cause EMI (Electromagnetic Interference) which will affect the stability of the circuit. Today there are many solutions to resolve this interference. In this thesis, we design the switching Buck-Boost regulator and use the spread spectrum method to solve the electromagnetic interference. By using spread spectrum method, we can change the clock signal and the energy of the output spectrum can spread within the controlled frequency range, and reduce peak energy at each harmonic spectrum. The solution is simple to implement on the circuit, as well as lower the overall power consumption and reduce the use of the area on the wafer. In this thesis, we reduce the EMI about 8dB~20dB.
摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………II
目次……………………………………………………………………………………III
圖目次……………………………………………………………………………………V
表目次………………………………………………………………………………VIII
第一章 緒論……………………………………………………………………………1
1.1研究背景……………………………………………………………………………1
1.2研究動機……………………………………………………………………………2
1.3論文架構……………………………………………………………………………3
第二章 穩壓器分析與介紹……………………………………………………………4
2.1電源管理……………………………………………………………………………4
2.2線性穩壓器…………………………………………………………………………4
2.3切換式穩壓器………………………………………………………………………5
2.4切換式電容穩壓器…………………………………………………………………5
2.4.1 電荷泵浦降壓式穩壓器………………………………………………………6
2.4.2 電荷泵浦升壓式穩壓器………………………………………………………7
2.4.3 電荷泵浦電壓反轉式穩壓器…………………………………………………9
2.5切換式電感穩壓器…………………………………………………………………10
2.5.1 降壓式電感穩壓器……………………………………………………………11
2.5.2 升壓式電感穩壓器……………………………………………………………15
2.5.3 升降壓式電感穩壓器…………………………………………………………18
2.6穩壓器性能比較表…………………………………………………………………22
2.7穩壓器的暫態響應…………………………………………………………………22
2.7.1 線性調節率(Line Regulation)…………………………………………22
2.7.2 負載調節率(Load Regulation)…………………………………………23
2.7.3 輸出電壓漣波(Output Ripple)…………………………………………23
2.7.4 回復時間(Recovery Time)………………………………………………23
第三章 單電感雙輸出升降壓系統設計介紹…………………………………………25
3.1切換式穩壓氣動作的控制方法……………………………………………………25
3.1.1 連續導通模式…………………………………………………………………25
3.1.2 非連續導通模式………………………………………………………………27
3.1.3 連續導通模式與非連續導通模式的邊界條件………………………………30
3.2 切換式穩壓器的控制模式………………………………………………………32
3.2.1 電壓控制模式…………………………………………………………………32
3.2.2 電流控制模式…………………………………………………………………33
3.2.3 切換式穩壓器控制模式比較…………………………………………………35
3.3 單電感雙輸出升降壓穩壓器……………………………………………………35
3.4 降低電磁干擾與兩階段軟啟動電路的介紹……………………………………38
3.5 TYPE-III補償網路……………………………………………………………39
第四章 單電感雙輸出升降壓穩壓器系統架構與電路實現…………………………42
4.1 偏壓電路(Bias Circuit)……………………………………………………43
4.2 誤差放大器(Error Amplifiers)…………………………………………44
4.3 能隙參考電壓源電路(Bandgap Reference)………………………………48
4.4 遲滯比較器(Hysteresis Comparator)…………………………………50
4.5 鋸齒波產生器(Sawtooth Oscillator)…………………………………53
4.6 兩階段軟啟動電路(Two-Stage Soft-Start Circuit)………………57
4.6.1 預充電路(Pre-Charge Circuit)………………………………………57
4.6.2 軟啟動電路(Soft-Start Circuit)……………………………………58
4.7 最高電壓選擇電路(Max Voltage Selector Circuit)………………60
4.8 電壓準位調整電路(Level Shift Circuit)……………………………61
4.9 非重疊導通電壓電路(Non-Overlapping Circuit)……………………62
4.10 SR正反器(SR Flip Flop)…………………………………………………63
4.11 脈波寬度調變電路(Pulse Width Modulation)………………………64
4.12 邏輯控制電路(Logic Control Circuit)………………………………64
第五章 穩壓器模擬結果與佈局考量…………………………………………………66
5.1佈局考量……………………………………………………………………………67
5.2整體佈局……………………………………………………………………………68
5.3模擬結果……………………………………………………………………………68
5.3.1 輸出電壓漣波(Output Ripple)…………………………………………69
5.3.2 線性調節率(Line Regulation)…………………………………………71
5.3.3 負載調節率(Load Regulation)…………………………………………75
5.3.4 交互調節率(Cross Regulation)………………………………………79
5.3.5 頻譜分析………………………………………………………………………83
5.3.6 整體模擬結果…………………………………………………………………83
5.3.7 效率……………………………………………………………………………84
5.4規格比較表…………………………………………………………………………85
第六章 結論與未來展望………………………………………………………………86
6.1結論…………………………………………………………………………………86
6.2未來展望……………………………………………………………………………86
參考文獻………………………………………………………………………………87

[1]IEEE Transcations on, http://www.statista.com/chart/1011/connected-device -shipment-forecast/, 2013.
[2]採用展頻技術的EMI解決方案, http://www.fujitsu.com/downloads /CN/fss/find/29-1/tw/p13-16.pdf .
[3]K. Salmi, C. Scarabello, O. Chevalerias, and F. Rodes, “4V, 5mA Low Drop-Out Regulator Using Series-Pass N-channel MOSFET,” Electronics Letters, Vol.35, pp.1214-1215, 1999.
[4]謝宗翰, 劉堂傑, 蕭敏學, “Study on the Design and Implementation of High-Conversion-Ratio 4-phase Mixed-Structure Charge Pumps,” Master Thesis, Feng Chia University, 2011.
[5]梁適安, 交換式電源供應器之理論與實務設計, 全華圖書股份有限公司, 2008.
[6]W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable Application,” IEEE Transaction on Power Electronics, Vol. 23, No. 2, pp. 667-677, 2008.
[7]M. Siu, P.K.T Mok, K. N. Leung, Y. H. Lam, and W. H. Ki, “A Voltage-Mode PWM Buck Regulator With End-Point Prediction,” IEEE Transactions on Circuits and Systems II, Express Briefs, Vol. 53, No.4, pp. 294-298, 2004.
[8]Wei-Hsun Chang and Chien-Hung Tsai, “Integrated Single-Inductor Buck-Boost or Boost-Boost DC-DC Converter with Power-Distributive Control,” International Conference on Power Electronics and Drive Systems, pp. 1184 - 1187, 2009.
[9]A. Sharma and Y. S. Pavan, “A Single Inductor Multiple Output Converter With Adaptive Delta Current Mode Control,” IEEE International Symposium on Circuits and Systems, pp456-460, 2006.
[10]B. Razavi, ”Design of Analog CMOS Integrated Circuits,” Boston, MA:McGraw-Hill, 2001.
[11]David A. Johns, “Analog Integrated Circuit Design,” A Wiley-Interscience, 1997.
[12]Ka Nang Leung and Mok, P.K.T.,” A Sub-1-V 15-ppm/°C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, Vol. 37, NO.1, pp.526-530, 2002.
[13]John Wiley and Sons, “ Introduction to CMOS OP-AMPs and comparators,” A Wiley-Interscience, 1999.
[14]X. Qian and T. H. Teo, “A Low-Power Comparator With Programmable Hysteresis Level For Blood Pressure Peak Detection,” TENCON Conference, pp. 1-4, 2009.
[15]B. Sahu and G. A. Rincon-Mora, “A High-Efficiency Dual-Mode Dynamic Buck-Boost Power Supply IC For Portable Applications,” International Conference on VLSI Design, pp.858-861, 2005.
[16]W. Liou, C. Kuo, M. Yeh, P. Chen, and M. Rosales, “A Dual-Mode Step-up DC/DC Converter IC With Current-Limiting and EMI Reduction Techniques,” International Conference on Communications, Circuits and Systems, pp. 1332-1336, 2008.
[17]G. Thiele, K. Scoones, T. Keller, and F. Prexl, “Precharge Circuit For DC/DC Boost Converter Startup,” U.S. Patents, 2007.
[18]P. Mandal, P. Khan, and R. Pandey, “Max-Supply Selector Using A Voltage Comparator,” Mixed Design of Integrated Circuits and System,pp.327-331, 2006.
[19]C. Leung, P. Mok, and K. Leung, “A 1-V Integrated Current-Mode Boost Converter In Standard 3.3/5-V CMOS Technologies,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2265-2274, 2005.
[20]Changsik Yoo, “A CMOS Buffer Without Short-Circuit Power Consumption,” IEEE Transcations on Circuits and System II:Analog and Digital Signal Processing, Vol. 47, Issue:9, pp.935-937, 2000.
[21]G.S.Lin, H.P.Chou, W.S Liu, “A Single-Inductor Dual-Output Step-Down DC-DC Converter” IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), pp. 383-388, 2013.
[22]Guan-Lin Li, Ying-Chi Chen, Yi-Ting Chang, Chien-Hung Tsai, and Huei-Shan Chen, “A Single-Inductor Dual-Output DC-DC Converter with Output Voltage Mode Switching,” IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-4, 2012.
[23]Wei-Hsun Chang, Jia-Hui Wang and Chien-Hung Tsai, “A Peak-Current Controlled Single-Inductor Dual-Output DC-DC Buck Converter With A Time-Multiplexing Scheme,” International Symposium on VLSI Design Automation and Test (VLSI-DAT), pp. 331-334, 2010.
[24]Xiaocheng Jing, Philip K.T. Mok and Ming Chak Lee, “A Wide-Load-Range Single-Inductor-Dual-Output Boost Regulator with Minimized Cross-Regulation by Constant-Charge-Auto-Hopping (CCAH) Control,” Custom Integrated Circuits Conference, pp. 299-302, 2009.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top