跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Kartika
研究生(外文):Sahoo, Kartika Chandra
論文名稱:用於太陽電池之氮化矽次波長抗反射結構設計與樣品試製
論文名稱(外文):Design and Fabrication of Sub-wavelength Structures on Silicon Nitride for Solar Cells
指導教授:張翼張翼引用關係
指導教授(外文):Chang, Yi Edward
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:104
中文關鍵詞:太陽能電池次波長氮化矽樣品試製奈米刺激
外文關鍵詞:Solar CellSub-wavelength StructureSilicon NitrideFabricationNanoconeSimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:135
  • 收藏至我的研究室書目清單書目收藏:1
本論文首先以數值模擬計算太陽電池之氮化矽次波長抗反射結構。根據理論的分析,吾人進而發展樣品試製方法去製作氮化矽次波長結構。氮化矽是一種常用於半導體上的反射結構層材料,吾人藉此次波長結構當成第二抗反射層,使得完整樣品的結構為雙層抗反射層。此種雙層抗反射結構成本低並具有不錯的太陽電池的光、電特性。

模擬上我們是使用嚴謹的波偶合法進行反射率計算,研究上吾人是對一理想化的金字塔型的氮化矽次波長抗反射結構進行反射率對照射波的計算。其中單層抗反射層、雙層抗反射層皆一一加以分析比較,進而找出較佳的幾何結構比,及其伴隨的有效反射率。藉由理論分析的結果,吾人運用自組裝鎳奈米粒子以及誘導式電漿離子偶合蝕刻提出一個簡單且可控制比例的製程步驟。藉此法在矽基板上以鎳薄膜厚度去控制鎳奈米粒子的大小與密度。由於次波長結構的表面形成與反應式離子蝕刻的條件密切相關,因此研究上也探討誘導式電漿離子偶合蝕刻製程條件對於氮化矽次波長抗反射結構成長的影響。吾人藉由實驗已找出蝕刻時間與結構幾何比例以及反射率的關係。

總之,本研究已經完成適用於太陽電池之氮化矽次波長抗反射結構的理論與實驗研究。未來可以研究不同次波長結構形狀的製程以及反射率之相關議題。

In this dissertation, we numerically study the reflectance of sub-wavelength structures on silicon nitride for solar cell application. Based on the numerical study, we develop a fabrication method to form the sub-wavelength structures on silicon nitride surface for solar cells. Since silicon nitride is a well known antireflection coating used in semiconductor industry, we explore the texturization on silicon nitride antireflection coating and its optical properties. The main motivation behind this lies in the fact that the sub-wavelength structures will act as a second antireflection coating layer with an effective refractive index so that the total structure can perform as a double layer antireflection coating layer. Thus, we could cost down the deposition of second antireflection coating layer can be saved with better or comparable performance as that of a double layer antireflection coating solar cell.
In this study, we calculate the spectral reflectivity of pyramid-shaped silicon nitride sub-wavelength structures. A multilayer rigorous coupled-wave approach is advanced to investigate the reflection properties of silicon nitride sub-wavelength structure. We examine the simulation results for single layer antireflection and double layer antireflection coatings with sub-wavelength structure on silicon nitride surface, taking into account effective reflectivity over a range of wavelengths and solar efficiency. The results of our study show that a lowest effective reflectivity of 3.43% can be obtained for the examined silicon nitride sub-wavelength structure with the height of etched part of silicon nitride and the thickness of non-etched layer of 150 nm and 70 nm, respectively, which is less than the results of an optimized 80 nm silicon nitride single layer antireflection coating (~ 5.41%) and of an optimized double layer antireflection coating with 80 nm silicon nitride and 100 nm magnesium fluoride (~5.39%). 1% cell efficiency increase is observed for the optimized Si solar cell with silicon nitride sub-wavelength structure, compared with the cell with single layer silicon nitride antireflection coatings; furthermore, compared with double layer antireflection coated solar cell, the increase is about 0.71%. The improvement on the cell efficiency is mainly due to lower reflectance of silicon nitride sub-wavelength structure over a wavelength region from 400 nm to 600 nm that leads to lower short circuit current.
Based upon our theoretical calculation of improved efficiency of silicon solar cell with silicon nitride sub-wavelength structures, we have developed a simple and scalable approach for fabricating sub-wavelength structures on silicon nitride by means of self-assembled nickel nano particle masks and inductively coupled plasma ion etching. The size and density of nickel nano particles are controlled by the initial thickness of nickel film that will be annealed to form the nano-particles on the silicon nitride film deposited on the silicon substrate. Inductively coupled plasma etching time is responsible for controlling the height of the fabricated silicon nitride sub-wavelength structure on silicon substrate.
Nevertheless, the surface profile of a sub-wavelength structure is strongly dependent on the conditions of the reactive ion etching process. So, we have also investigated the effect of inductively coupled plasma etching conditions on the profile of fabricated sub-wavelength structure on Silicon nitride antireflection coating layers. At last, we succeeded in fabrication of nanopillar structures and nanocone structures on silicon nitride surface by one step and two step inductively coupled plasma etching methods. The relationship of etching time with structure height and average reflectance spectra has been drawn.
In summary, design and fabrication of sub-wavelength structures on silicon nitride antireflective surface was investigated for the first time. The structure height and non-etched part of silicon nitride has been optimized for lowest effective reflectance by theoretical calculation using rigorous coupled wave analysis method. Also the shape effect has been studied theoretically. Based on theoretical results, the nanopillar and nanocone structures on silicon nitride surface have been fabricated successfully using self-assembled nickel nano clusters and inductively coupled plasma etching method. The achieved low reflectance is believed to be useful to improve the efficiency of solar cells. Also, the preliminary results for a silicon solar cell has been obtained using silicon nitride sub-wavelength structure, which shows a great promise in improvement of efficiency compared with a single layer antireflection coating.

ACKNOWLEDGEMENT IV
Abstract in Chinese VI
Abstract in English VIII
Contents X
Tables XII
Figures XIII

Chapter 1 Introduction 1
1.1 Introduction to solar cell 1
1.2 Solar Cell figures of merit 4
1.2.1 Voltage and current 4
1.2.2 Efficiency 5
1.2.3 Natural Limits of Efficiency 6
1.3 Antireflection Coatings 9
1.3.1 Single Layer Antireflection Coatings 9
1.3.2 Multi-layer Antireflection Coatings 11
1.4 Sub-wavelength Structures 12
1.5 Motivation 13
1.6 Thesis content 15
Chapter 2 Design and Simulation of Silicon Nitride SWS 17
2. 1 Sub-wavelength structure design 17
2.1.1 Theory and Simulation Procedure 17
2.1.2 Results and Discussions 22
2.2 Shape Effect 31
2.2.1 Simulation Procedure 31
2.2.2 Results and Discussion 33
2.3 The Electrical Characteristics Calculation 39
2.3.1 Introduction to PC1D software 39
2.3.2 Simulation Procedure 41
2.3.3 Simulation Settings 42
2.3.4 Results and Discussion 43
2.4 Summary 45
Chapter 3 Fabrication Processes and Measurements 47
3.1 Sub-wavelength structure Fabrication Process 47
3.1.1 Wafer Clean 48
3.1.2 Deposition of Silicon Nitride 48
3.1.3 Nano-mask Formation 50
• Deposition of Metal 51
• Rapid Thermal Anneal 51
3.1.4 Inductively Coupled Plasma (ICP) Etching 52
3.1.5 Nano-mask Removal 52
3.2 Characterization Methods 53
3.2.1 Morphology Analysis 53
3.2.2 Reflectance Measurement 53
3.3 Results and Discussion 53
3.3.1 Process optimization of Nanomask for silicon nitride SWS 53
3.3.1.1 RTA temperature optimization 53
3.4.1.2 Initial Nickel Thickness optimization 55
3.3.2 Height optimization of silicon nitride SWS 58
3.4 Results Comparison 64
3.4.1 Comparison of measurement and simulation 64
3.4.2 SWS Comparison with SLAR & DLAR 66
3.5 Summary 68
Chapter 4 Fabrication of Nanocones 69
4.1 Experimental 69
4.2 Results and Discussions 70
4.4 Summary 79
Chapter 5 Solar Cell Fabrication 80
5.1 Fabrication Process 80
5.2 Results and Discussion 82
5.3 Summary 84
Chapter 6 Conclusions and Future Works 85
6.1 Conclusion 85
6.2 Future Work 87
Appendices 89
References 96
Curriculum Vita 100
[1] Jeffrey A. Mazer: Solar Cells: An Introduction to Crystalline Photovoltaic Technology (Kluwer Academic Publishers, USA, 1997).
[2] E.Fred Schubert: Light-Emitting Diodes (Cambridge University Press) 409-412.
[3] F.W. Sexton, Solar Energy Mater. Sol. Cells 7 (1991) pp. 1.
[4] R. Kishore, S.N. Siingh, B.K. Das, Sol. Energy Mater. Sol. Cells 26 (1992) pp. 27.
[5] Z. Chen, P. Sana, J. Salami, A. Rohatgi, IEEE Trans. Electron Devices 40 (1993) pp. 1161.
[6] K. Ram, S.N. Singh, B.K. Das, Renewable Energy 12 (1997) pp. 131.
[7] C. Battaglin, F. Caccavale, A. Menelle, M. Montecchi, E. Nichelatti, F. Nicoletti, Thin Solid Films 351(1999) pp. 176.
[8] U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi, Appl. Surf. Sci. 230 (2004) pp. 364.
[9] Xi, J. Q., M. F. Schubert, et al., Nature Photonics 1 (3) (2007) pp. 176.
[10] H.A. Macleod: Thin-Film Optical Filters (second ed., McGraw-Hill, New York, 1990).
[11] D. Chen, Sol. Energy Mater. Sol. Cells 68 (2001) pp. 313.
[12] T. Mizuta, T. Ikuta, T. Minemoto, H. Takakura, Y. Hamakawa, T. Numai, Sol. Energy Mater. Sol. Cells 90 (2006) pp. 46.
[13] B. Paivanranta, N. Hekkila, and M. Kuittnen, J. Opt. Soc. Am. A 24, 6 (2007) pp. 1680.
[14] P. Lalanne and G. M. Morris, Nanotechnology 8 (1997) pp. 53.
[15] Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin and C K Lee, Nanotechnology 18 (2007) pp. 285.
[16] M. J. Minot, J. Opt. Soc. Am. 66 (1976) pp. 515.
[17] T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schro¨ter and V. Baier, Microsystem Technologies 11 (2005) pp. 86.
[18] K. Hadobas, S. Kirsch, A. Karl, M. Acet, and E. F. Wassermann, Nanotechnology, 11 (2000) pp. 161.
[19] Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett., 24 (1999) pp. 1422.
[20] Z. N. Yu, H. Gao, W. Wu, H. X. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B, 21 (2003) pp. 2874.
[21] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett., 88 (2006) pp. 20116.
[22] Y. Inomata, Sol. Energy Mater. Solar Cells, 48 (1997) pp. 237.
[23] H. F. W. Dekkers, Opto-Elctron. Rev., 8 (2000) pp. 311.
[24] L. Lalanne and M. Hutley: Artificial media optical properties subwavelength scale Encyclopedia of optical Engineering (Dekker, New York, 2003).
[25] P. Yeh: Optical Waves in Layered Media (Wiley, New York, 1991).
[26] D. A. G. Bruggeman, Ann. Phys. 24 (1935) pp. 636.
[27] J. Zhao, M.A. Green, IEEE Trans. Electron Dev. 38 (1991) pp. 1925.
[28] H. A. Macleod: Thin-Film Optical Filters (3rd ed., Institute of Physics, Bistol, 2001).
[29] L. M. Brekhovshikh: Waves in Layered Media (Academic, New York, 1960).
[30] K. L. Chopra and S. R. Das: Thin film solar cells (Plenum Press, New York and London 1983).
[31] C.-H. Sun, W.-L. Min, N. C. Linn, and P. Jiang, Appl. Phys. Lett. 91 (2007) pp. 231105.
[32] S. Khedim, A. Chiali, B. Benyoucef, and N. E. Chabane Sari, in: Proc. Revue des Energies Renouvelables ICRESD-07 Tlemcen (2007) pp. 337.
[33] D. N. Wright, E. S. Marstein and A. Holt, in: Proc. The 31st IEEE Photovoltiac Specialists Conf., Orlando Fl (2005) pp. 1237.
[34] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173.html
[35] D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, (2006) pp. 661.
[36] C. G. Bernhard, W. H. Miller and A. R. Møller, Acta Physiol. Scand. 63 (Suppl.243), (1965) pp. 1.
[37] P. A. Basore: PC-1D Installation Manual and User's GuideVersion 3.1 (Sandia Report, Sandia National Laboratories, California, 1991)
[38] D. A. Clugston and P. A. Basore, in: Proc. The 26th IEEE Photovoltiac Specialists Conf., Anaheim (1997) pp. 207.
[39] P.A. Basore, IEEE Trans. on Electron Devices 37, (1990) pp. 337.
[40] http://www.semiconductor.net/article/CA6572786.html
[41] S. Aggarwal, S. B. Ogale, C. S. Ganpule, S. R. Shinde, V. A. Novikov, A. P. Monga, M. R. Burr, R. Ramesh, V. Ballarotto and E. D. Williams, Appl. Phys. Lett. 78 (2001) pp. 1442.
[42] C. Bower, O. Zhou, W. Zhu, D. J. Werder and S. Jin, Appl. Phys. Lett. 77 (2000) pp. 2767.
[43] J. D. Carey, L. L. Ong, S. R. P. Silva, Nanotechnology 14 (2003) pp. 1223.
[44] B. G. Prevo, E. W. Hon, and O. D. Velev, J. Mater. Chem. 17, (2007) pp. 791.
[45] P. Lalanne and G. M. Morris, Nanotechnology 8, (1997) pp. 53.
[46] C. Aydin, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, (2002) pp. 2242.
[47] Y. Kanamori, E. Roy, and Y. Chen, Microelectron. Eng. 78-79, (2005) pp. 287.
[48] Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, (1999) pp. 1422.
[49] H. Xiao: Introduction to Semiconductor Manufacturing Technology (Prentice Hall, Upper Saddle River, NJ, 2001).
[50] A. Luque and S. Hegedus: Handbook of Photovoltaic Science and Engineering ( John Wiley & Sons, Ltd, ISBN: 0-471-49196-9, 2003).
[51] L. L. Kazmerski, Journal of Electron Spectroscopy and Related Phenomena 150 (2006) 105.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊