跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚鈞
研究生(外文):Chun Yao
論文名稱:以果蠅為動物模型對肉蓯蓉的抗老化機制研究
論文名稱(外文):A Study of anti-ageing mechanisms of Cistanche deserticola by using Drosophila melanogaster
指導教授:林維勇
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中醫學系碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:肉蓯蓉老化果蠅大腦意識功能饑餓雙氧水百草枯乙二醇
外文關鍵詞:Cistanche deserticolaageingDrosophila melanogastercognitive functionsstarvationhydroxyl peroxideparaquatethylene glycol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全人類平均壽命的增長,現代醫學必須面對過往一來不曾出現的諸多的新興疾病。而在這之中有許多疾病與老化過程有極切的相關聯,並可能造成系統性的功能缺失或增加生物體內的氧化壓力。
根據黃帝內經的記載:「男女…… 八八天癸渴,精少,腎臟衰,形體皆極…… 」因此,腎經相關的植物藥備有抗老化的功能。我們選擇了滋腎陰的中藥植物用藥—肉蓯蓉為標的研究藥物。
在此篇研究中,我們呈現滋腎藥肉蓯蓉俱有延長果蠅的壽命,此外,肉蓯蓉也助於年老及年輕果蠅的大腦意識功能。為了研究肉蓯蓉對於果蠅的抗老化的藥理機轉,我們給予果蠅一系列的壓力抵禦試驗,實驗結果表示肉蓯蓉可以增強對於壓力的抵禦能力,例如,饑餓,雙氧水,百草枯以及乙二醇。這些這些結果表示肉蓯蓉俱有潛力能預防不只複數個能影響多系統的壓力外,以及針對神經細胞攻擊的壓力。很重要的,肉蓯蓉可以促進被餵食果蠅的性慾,交配能力及羽化率。
整體而言,我們的實驗發現每日攝食肉蓯蓉可以讓年老的果蠅在每組測驗中表現更好,這項結果給我們一個暗示—若每日攝食若每日攝食固定劑量的肉蓯蓉產品,可以延緩老化。

With the extending of the average human life span, modern medicine faces treating many diseaseswhich previously did not exist. Many of these diseases are related to the process of ageing,and thereforemay cause systemic dysfunction and increase the oxidative levelin vivo.
Based on The Yellow Emperor’s Inner Classic, both males and females become kidney-deficient in the latter part of their lives. Therefore, kidney-meridian-related herbs might possess anti-ageing effects. We chose Cistanche deserticola (CD), a kidney-tonifying Chinese herbal medicine (CHM) as our study’sfocus.
Results showed that CD extended the life spanof fruit flies. Also, CD is beneficial for cognitive function in both aged and young flies. In order to investigate the pharmacological mechanisms of CD on fruit flies, several different stress-related pathways were tested. Results showed that CD strengthened the resistance to multiple stresses, including starvation, hydroxyl peroxide (H2O2),paraquat (PQ), and ethylene glycol (EG). These results suggest that CD has the potential to strengthen resistance against not only the stresses that influence multiple systems but also the stresses that specifically attack neurons. Last but not least, CD promoted sexual desire, mating ability, and the eclosion rate in offspring.
Over all, our studies revealed that consuming CD dailyenabled aged flies to perform better on each test.This indicates that products containing CD, if administered daily in specific amounts, can be used as dietary supplements or anti-ageing medicine.

1. Introdution 1
2. Research Review 4
2.1 Overview on Current Ageing Research 4
2.2 Chinese Medicine and Ageing 5
2.2.1 Fundamental Knowledge of Chinese Medicine 5
2.2.2 Diagnosis, Organs, Networks, Five Elements and Ageing in Chinese Medicine 6
2.2.3 Modern Research Of Yin/Yang and Kidney-tonifying Medicine 7
2.3 Review of Research on Cistanche deserticola 9
2.3.1 Introduction to Cistanche deserticola 9
2.3.1.1 Species in Cistanche Genus Grow in China 9
2.3.2 Pharmacological Functions of Cistanche deserticola 9
2.3.2.1 Traditional Usage of CD and its Major Compounds 9
2.3.2.2 Cistanche Protects Sperm from Oxidative Stress. 10
2.4 Ageing-related Symptoms and Diseases 15
2.4.1 Overview 15
2.4.2 Ageing, Neurodegeneration, and Gene Expression 16
2.4.3 Age-Related Neural Degeneration and Theories of Age-related Learning and
Memory Impairment 16
2.4.3.1 Neurodegeneration and the Decline of Neurogenesis 17
2.4.3.2 Dysregulated Synaptic Functions and Ineffective Neurotransmission 17
2.4.4 Other Age-related Physiological Impairments and Medical Care Costs 19
2.4.4.1 Muscular Dysfunction, Motor Function Impairment 19
2.4.4.2 Sexual Dysfunction, Sex, and Ageing 20
2.5 What are the Benefits of Using Drosophila as an Animal Model? 20
3. Materials and Methodology 22
3.1 Fly Maintenance, TCM Treatment, Reagents and Sample Preparation 22
3.2 Longevity and Negative Gravity Assays 22
3.3 Body Weight and Feeding Assays. 22
3.4 Starvation Resistance Assays 23
3.5 H2O2 Resistance Assays 23
3.6 PQ Resistance Assays 23
3.7 Ethylene Glycol Resistance Assays 23
3.8 Courtship Behaviour Assays 23
3.9 Egg Laying, Eclosion and Offspring Sex Rate Assays 24
3.10 Olfactory-associated Learning and Memory Assays 25
3.11 Statistical Analysis 25
4. Results 26
4.1 The Development of a Platform to Study CD’s Anti-ageing Effects on Drosophila 26
4.2 The Effect of Life-long Treatment with CD 26
4.3 Body Weight and CD 27
4.4 CD’s Effects on Learning and Memory Ability in Aged Adult 29
4.5 CD’s Effects onLearning and Memory Ability inYoung Adults 30
4.6 Aged Flies,Long-term Consumption of CD, and Multiple Stresses 33
4.6.1 Starvation Resistance 33
4.6.2 Hydrogen Peroxide 33
4.6.3Paraquat 33
4.6.4 Ethylene Glycol (EG) 37
4.7 Age, Sexual dysfunction, CD 37
4.7.1 Sexual Dysfunction in Male Flies 37
4.7.2 Sexual Ability and Desire, Females 41
4.8 Sexual Function, CD 41
5. Discussion 45
5.1 Comparison of this Research and Previous Studies 45
5.1.1 CD’s Effects on Mice and Fruit Flies 45
5.1.2 CD, AMI, and Neural Protection 45
5.2 Clinical Treatments and Experimental Results for Age-related Sexual Dysfunction 48
5.2.1 Courtship Behaviours According to Age and Sex 48
5.2.2 Sexual Function and Life Span 49
5.3 Possible Mechanisms or Pathways of CD in vivo 50
5.4 AMI in Aged Flies, Memory Ability in Young Flies 50
5.5 CD and Mitochondria 51
5.6 CD and ROS 51
5.7 CD and JNK 52
6. Conclusions 53
7. References 55
8. 中文摘要 65
9. Acknowledgements 66
10. Appendix 67


1.Organization, W.H., Global Health and Aging. 2011. 26.
2.Vaupel, J.W., Biodemography of human ageing. Nature, 2010. 464(7288): p. 536-42.
3.World Health Organization. Dept. of Noncommunicable Disease Prevention and Health Promotion., Active ageing : a policy framework. Active ageing series. 2002, Geneva: World Health Organization. 59 p.
4.Crespy, V. and G. Williamson, A review of the health effects of green tea catechins in in vivo animal models. J Nutr, 2004. 134(12 Suppl): p. 3431S-3440S.
5.Youn, H.J. and J.W. Noh, Screening of the anticoccidial effects of herb extracts against Eimeriatenella. Vet Parasitol, 2001. 96(4): p. 257-63.
6.Liu, L., et al., Taoren-Honghua herb pair and its main components promoting blood circulation through influencing on hemorheology, plasma coagulation and platelet aggregation. J Ethnopharmacol, 2012. 139(2): p. 381-7.
7.Chi, S., et al., Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels. Cell Death Dis, 2010. 1: p. e13.
8.Chen, R.J., et al., Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. ActaPharmacol Sin, 2011. 32(2): p. 141-51.
9.Figueira, H.A., et al., Elderly quality of life impacted by traditional Chinese medicine techniques. ClinInterv Aging, 2010. 5: p. 301-5.
10.Medvedev, Z.A., An attempt at a rational classification of theories of ageing. Biol Rev CambPhilosSoc, 1990. 65(3): p. 375-98.
11.Jaskelioff, M., et al., Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 2011. 469(7328): p. 102-6.
12.Vilchez, D., M.S. Simic, and A. Dillin, Proteostasis and aging of stem cells. Trends Cell Biol, 2013.
13.Benz, C.C. and C. Yau, Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer, 2008. 8(11): p. 875-9.
14.Jin, K., Modern Biological Theories of Aging. Aging Dis, 2010. 1(2): p. 72-74.
15.McKay, J.D., et al., Lung cancer susceptibility locus at 5p15.33. Nat Genet, 2008. 40(12): 
p. 1404-6.
16.Glass, D., et al., Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol, 2013. 14(7): p. R75.55
17.Kaletsky, R. and C.T. Murphy, The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Model Mech, 2010. 3(7-8): p. 415-9.
18.Bai, H., P. Kang, and M. Tatar, Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell, 2012. 11(6): p. 978-85.
19.Lorenzini, A., et al., Mice Producing Reduced Levels of Insulin-Like Growth Factor Type 1 Display an Increase in Maximum, but not Mean, Life Span. J Gerontol A BiolSci Med Sci, 2013.
20.Savva, G.M., et al., Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell, 2013. 12(3): p. 381-7.
21.Schmidt, R., et al., Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol, 2002. 52(2): p. 168-74.
22.Lyman, M., et al., Neuroinflammation: The role and consequences. Neurosci Res, 2013.
23.Kelly, D.P., Cell biology: Ageing theories unified. Nature, 2011. 470(7334): p. 342-3.
24.Holloszy, J.O., et al., Effect of voluntary exercise on longevity of rats. J ApplPhysiol (1985), 1985. 59(3): p. 826-31.
25.Oikawa, S., K. Murakami, and S. Kawanishi, Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene, 2003. 22(23): p. 3530- 8.
26.Sander, C.S., et al., Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol, 2003. 148(5): p. 913-22.
27.Maciocia, G., The foundations of Chinese medicine : a comprehensive text for acupuncturists and herbalists. 2nd ed. 2005, Edinburgh: Elsevier Churchill Livingstone. xxix, 1205 p.
28.Ni, M., The Yellow Emperor''s Classic of medicine : a new translation of the NeijingSuwen with commentary. 1st ed. 1995, Boston: Shambhala. xvi, 316 p.
29.Scheid, V., Traditional Chinese medicine--what are we investigating? The case of menopause. Complement Ther Med, 2007. 15(1): p. 54-68.
30.Zell, B., et al., Diagnosis of symptomatic postmenopausal women by traditional Chinese medicine practitioners. Menopause, 2000. 7(2): p. 129-34.
31.Ou, B., et al., When east meets west: the relationship between yin-yang and antioxidation- oxidation. FASEB J, 2003. 17(2): p. 127-9.
32.Ko, K.M. and H.Y. Leung, Enhancement of ATP generation capacity, antioxidant activity and immunomodulatory activities by Chinese Yang and Yin tonifying herbs. Chin Med, 2007. 2: p. 3.
33.Zhao, L., et al., Metabolic Signatures of Kidney Yang Deficiency Syndrome and Protective Effects of Two Herbal Extracts in Rats Using GC/TOF MS. Evid Based Complement Alternat Med, 2013. 2013: p. 540957.
34.Hu, J., et al., [Effect of Kidney-Tonifying and Blood-Promoting Recipe on the expression of CD11b/CD18 and Bcl-2/Bax in aged patients with kidney deficiency and blood stasis syndrome]. Nan Fang Yi Ke Da Xue Xue Bao, 2010. 30(4): p. 760-2.
35.Liu, H.P., et al., The Yang-Tonifying Herbal Medicine Cynomorium songaricum Extends Lifespan and Delays Aging in Drosophila. Evid Based Complement Alternat Med, 2012. 2012: p. 735481.
36.Zhang, K., et al., Extracts of Cistanche deserticola Can Antagonize Immunosenescence and Extend Life Span in Senescence-Accelerated Mouse Prone 8 (SAM-P8) Mice. Evid Based Complement Alternat Med, 2014. 2014: p. 601383.
37.Zhang, Y., et al., [Comparison on the kidney nourishing and yang strengthening functions of three different species of herba Cistanches]. Zhongguo Zhong Yao Za Zhi, 1994. 19(3): p. 169-71, 192.
38.LI Wen-lan, C.Q., YANG Bo, GAO Shang, ZHANG Jin-jin, Screening of Phytoestrogenic Effective Extracts and Dose of Cistanche deserticola. Chinese Herbal Medicines, 2013. 5(4): p. 5.
39.Ma, J., et al., Efficacy of Chinese Herbal Medicines in Treating Chronic Functional Constipation: A Systematic Review. Chinese J EBM, 2010. 10(10): p. 1213-21.
40.Wang, T., X. Zhang, and W. Xie, Cistanche deserticola Y. C. Ma, "Desert ginseng:" a review. Am J Chin Med, 2012. 40(6): p. 1123-41.
41.Gu, L., et al., Cistanche deserticola decoction alleviates the testicular toxicity induced by hydroxyurea in male mice. Asian J Androl, 2013. 15(6): p. 838-40.
42.Xiong, Q., et al., Antioxidative effects of phenyl ethanoids from Cistanchedeserticola. Biol Pharm Bull, 1996. 19(12): p. 1580-5.
43.Xuan, G.D. and C.Q. Liu, [Research on the effect of phenyl ethanoid glycosides (PEG) of the Cistanche deserticola on anti-aging in aged mice induced by D-galactose]. Zhong Yao Cai, 2008. 31(9): p. 1385-8.
44.Wu, X.M., et al., An arabinogalactan isolated from the stems of Cistanche deserticola induces the proliferation of cultured lymphocytes. Int J BiolMacromol, 2005. 37(5): p. 278-82.
45.Lin, L.W., et al., Anti-nociceptive and anti-inflammatory activity caused by Cistanche deserticola in rodents. J Ethnopharmacol, 2002. 83(3): p. 177-82.
46.Li, T.M., et al., Cistanche deserticola extract increases bone formation in osteoblasts. J Pharm Pharmacol, 2012. 64(6): p. 897-907.
47.Blagosklonny, M.V., Prospective treatment of age-related diseases by slowing down aging. Am J Pathol, 2012.181(4): p. 1142-6.
48.Bartke, A., Insulin and aging. Cell Cycle, 2008. 7(21): p. 3338-43.
49.Barzilai, N., et al., The critical role of metabolic pathways in aging. Diabetes, 2012. 61(6): p. 1315-22.
50.Klebanoff, C.A., et al., Therapeutic cancer vaccines: are we there yet? Immunol Rev, 2011. 239(1): p. 27-44.
51.Everitt, A.V., et al., Dietary approaches that delay age-related diseases. Clin Interv Aging, 2006. 1(1): p. 11-31.
52.Uttara, B., et al., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol, 2009. 7(1): p. 65- 74.
53.Wisniewski, T. and A. Boutajangout, Vaccination as a therapeutic approach to Alzheimer''s disease. Mt Sinai J Med, 2010. 77(1): p. 17-31.
54.Manton, K.G., The global impact of noncommunicable diseases: estimates and projections. World Health Stat Q, 1988. 41(3-4): p. 255-66.
55.Hernandez-Aguilera, A., et al., Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm, 2013. 2013: p. 135698.
56.Johnson, S.C., P.S. Rabinovitch, and M. Kaeberlein, mTOR is a key modulator of ageing and age-related disease. Nature, 2013. 493(7432): p. 338-45.
57.Pizza, V., et al., Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets, 2011. 10(5): p. 621-34.
58.Wang, D., et al., Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci, 2013. 70(16): p. 2919-34.
59.Cai, H., et al., Metabolic dysfunction in Alzheimer''s disease and related neurodegenerative disorders. Curr Alzheimer Res, 2012. 9(1): p. 5-17.
60.Zanigni, S., et al., REM behaviour disorder and neurodegenerative diseases. Sleep Med, 2011. 12 Suppl 2: p. S54-8.


61.Xia, S., et al., NMDA receptors mediate olfactory learning and memory in Drosophila. CurrBiol, 2005. 15(7): p. 603-15.
62.Silhol, M., et al., Effect of aging on brain-derived neurotrophic factor, proBDNF, and their receptors in the hippocampus of Lou/C rats. Rejuvenation Res, 2008. 11(6): p. 1031- 40.
63.Peleg, S., et al., Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010. 328(5979): p. 753-6.
64.Gore, A.C., T. Oung, and M.J. Woller, Age-related changes in hypothalamic gonadotropin-releasing hormone and N-methyl-D-aspartate receptor gene expression, and their regulation by oestrogen, in the female rat. J Neuroendocrinol, 2002. 14(4): p. 300-9.
65.Raz, N., et al., Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging, 2004. 25(3): p. 377-96.
66.Raz, N., et al., Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microsc Res Tech, 2000. 51(1): p. 85-93.
67.Remy, F., et al., Mental calculation impairment in Alzheimer''s disease: a functional magnetic resonance imaging study. NeurosciLett, 2004. 358(1): p. 25-8.
68.Walhovd, K.B., et al., Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging, 2005. 26(9): p. 1261-70; discussion 1275-8.
69.Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4710-5.
70.Low, V.F., et al., Neurogenesis and progenitor cell distribution in the subgranular zone and subventricular zone of the adult sheep brain. Neuroscience, 2013. 244: p. 173-87.
71.Haughey, N.J., et al., Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer''s disease. Neuromolecular Med, 2002. 1(2): p. 125-35.
72.Alvarez-Buylla, A. and J.M. Garcia-Verdugo, Neurogenesis in adult subventricular zone. J Neurosci, 2002. 22(3): p. 629-34.
73.Benarroch, E.E., Adult neurogenesis in the dentate gyrus: General concepts and potential implications. Neurology, 2013. 81(16): p. 1443-52.
74.Pan, Y.W., D.R. Storm, and Z. Xia, Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem, 2013. 105: p. 81-92.
75.Jin, K., et al., Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell, 2003. 2(3): p. 175-83.
76.Tang, H., et al., Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiol Aging, 2009. 30(2): p. 299-308.
77.Rasmussen, T., et al., Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging, 1996. 17(1): p. 143-7.
78.Rapp, P.R. and M. Gallagher, Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. ProcNatlAcadSci U S A, 1996. 93(18): p. 9926-30.
79.Cataldi, M., The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol, 2013. 11(3): p. 276- 97.
80.Faber, E.S. and P. Sah, Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J Neurosci, 2002. 22(5): p. 1618-28.
81.Disterhoft, J.F., et al., Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci, 1996. 59(5-6): p. 413-20.
82.VanGuilder, H.D., et al., Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem, 2010. 113(6): p. 1577-88.
83.McEntee, W.J. and T.H. Crook, Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology (Berl), 1993. 111(4): p. 391-401.
84.Silhol, M., et al., Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience, 2005. 132(3): p. 613-24.
85.Peleg, S., et al., Suppression of aberrant transient receptor potential cation channel, subfamily V, member 6 expression in hyperproliferative colonic crypts by dietary calcium. Am J Physiol Gastrointest Liver Physiol, 2010. 299(3): p. G593-601.
86.Niewoehner, B., et al., Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci, 2007. 25(3): p. 837-46.
87.Miyashita, T., et al., Mg(2+) block of Drosophila NMDA receptors is required for long- term memory formation and CREB-dependent gene expression. Neuron, 2012. 74(5): p. 887-98.
88.Alemayehu, B. and K.E. Warner, The lifetime distribution of health care costs. Health Serv Res, 2004. 39(3): p. 627-42.
89.Janssen, I., et al., Skeletal muscle mass and distribution in 468 men and women aged 18- 88 yr. J Appl Physiol (1985), 2000. 89(1): p. 81-8.
89.Verdijk, L.B., et al., Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr), 2014. 36(2): p. 545-7.
90.Stevens, J.A., et al., The costs of fatal and non-fatal falls among older adults. Inj Prev, 2006. 12(5): p. 290-5.
91.Kalra, G., A. Subramanyam, and C. Pinto, Sexuality: desire, activity and intimacy in the elderly. Indian J Psychiatry, 2011. 53(4): p. 300-6.
92.Meston, C.M., Aging and sexuality. West J Med, 1997. 167(4): p. 285-90.
93.Braun, M., et al., Epidemiology of erectile dysfunction: results of the ''Cologne Male Survey''. Int J Impot Res, 2000. 12(6): p. 305-11.
94.Rubin, G.M. and E.B. Lewis, A brief history of Drosophila''s contributions to genome research. Science, 2000. 287(5461): p. 2216-8.
95.Adams, M.D., et al., The genome sequence of Drosophila melanogaster. Science, 2000. 287(5461): p. 2185-95.
96.Phelps, C.B. and A.H. Brand, Ectopic gene expression in Drosophila using GAL4 system. Methods, 1998. 14(4): p. 367-79.
97.Zachepilo, T.G., et al., Comparative analysis of the locations of the NR1 and NR2 NMDA receptor subunits in honeybee (Apismellifera) and fruit fly (Drosophila melanogaster, Canton-S wild-type) cerebral ganglia. Neurosci Behav Physiol, 2008. 38(4): p. 369-72.
98.Billeter, J.C., et al., Control of male sexual behavior in Drosophila by the sex determination pathway. Curr Biol, 2006. 16(17): p. R766-76.
100.Ejima, A. and L.C. Griffith, Measurement of Courtship Behavior in Drosophila melanogaster. CSH Protoc, 2007.2007: p. pdb prot4847.
101.Tamura, T., et al., Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron, 2003.40(5): p. 1003-11.
102.Margulies, C., T. Tully, and J. Dubnau, Deconstructing memory in Drosophila. Curr Biol, 2005. 15(17): p. R700-13.
103.Kontula, O. and E. Haavio-Mannila, The impact of aging on human sexual activity and sexual desire. J Sex Res, 2009.46(1): p. 46-56.
104.Stefanova, N.A., et al., Effects of Cistanche deserticola on behavior and signs of cataract and retinopathy in senescence-accelerated OXYS rats. J Ethnopharmacol, 2011.138(2): p. 624-32.
105.Goldman, S.M., et al., Genetic modification of the association of PQ and Parkinson''s disease. Mov Disord, 2012. 27(13): p. 1652-8.
106.Gomes, R., et al., Ethylene glycol : human health aspects. Concise international chemical assessment document. 2002, Geneva: World Health Organization. 38 p.
107.Xiong, Q., et al., Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta Med, 1998.64(2): p. 120-5.
108.Chen, Y.H., et al., Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney Int, 2011.80(4): p. 369-77.
109.Dow, J.T. and S.A. Davies, Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev, 2003.83(3): p. 687-729.
110.Masters, W.H., Johnson, V.E., Human Sexual Response. 1 ed. 2010, United State of America: Ishi Press International.
111.Economos, A.C., et al., Quantitative analysis of mating behavior in aging male Drosophila melanogaster. Mech Ageing Dev, 1979.10(3-4): p. 233-40.
112.Stefan Lu ̈pold, M. K. M., OutiAla-Honkola, John M. Belote, and Scott Pitnick. Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behav. Ecol. 2010 22, 184-91.
113.Wigby, S. and T. Chapman, Sex peptide causes mating costs in female Drosophila melanogaster. Curr Biol, 2005. 15(4): p. 316-21.
114.Kann, L.M., E.B. Rosenblum, and D.M. Rand, Aging, mating, and the evolution of mtDNAheteroplasmy in Drosophila melanogaster. Proc Natl Acad Sci U S A, 1998. 95(5): p. 2372-7.
115.Minor, R.K., et al., Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A BiolSci Med Sci, 2010.65(7): p. 695-703.
116.Partridge, L., M.D. Piper, and W. Mair, Dietary restriction in Drosophila. Mech Ageing Dev, 2005.126(9): p. 938-50.
117.Walker, G., et al., Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev, 2005.126(9): p. 929-37.
118.Suzuki, S.W., J. Onodera, and Y. Ohsumi, Starvation induced cell death in autophagy- defective yeast mutants is caused by mitochondria dysfunction. PLoS One, 2011.6(2): p. e17412.
119.Tettweiler, G., et al., Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev, 2005. 19(16): p. 1840- 3.
120.Mikami, K., et al., Autophagosomes accumulate in differentiated and hypertrophic adipocytes in a p53-independent manner. Biochem Biophys Res Commun, 2012.427(4): p. 758-63.
121.D.D.Breimer, Life-history patterns in Panamanian Drosophila species from three different habitats, in Mathematics and Natural Sciences and of Medicine. 2005, University of Leiden: Netherlands. p. 158.
122.Rion, S. and T.J. Kawecki, Evolutionary biology of starvation resistance: what we have learned from Drosophila. J Evol Biol, 2007. 20(5): p. 1655-64.
123.Jang, K.P.L.a., Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Functional Ecology, 2014.
124.Wang, M.-H., DROSOPHILA MELANOGASTER STARVATION RESISTANCE: A QUANTITATIVE GENETIC AND PHYSIOLOGICAL INVESTIGATION IN RELATIONSHIP TO LIFE HISTORY TRAITS, in Biological Sciences. 2007, University of Nebraska: U.S.A. p. 118.
125.Kuo, T.H., et al., Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet, 2012. 8(4): p. e1002684.
126.Salih, D.A., et al., FoxO6 regulates memory consolidation and synaptic function. Genes Dev, 2012. 26(24): p. 2780-801.
127.Naganos, S., J. Horiuchi, and M. Saitoe, Mutations in the Drosophila insulin receptor substrate, CHICO, impair olfactory associative learning. Neurosci Res, 2012.73(1): p. 49-55.
128.Partridge, L., The new biology of ageing. Philos Trans R SocLond B BiolSci, 2010. 365(1537): p. 147-54.
129.Raught, B., A.C. Gingras, and N. Sonenberg, The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7037-44.
130.Schamberger, C.J., C. Gerner, and C. Cerni, Caspase-9 plays a marginal role in serum starvation-induced apoptosis. Exp Cell Res, 2005.302(1): p. 115-28.
131.Piazza, N., et al., Exercise-training in young Drosophila melanogaster reduces age- related decline in mobility and cardiac performance. PLoS One, 2009.4(6): p. e5886.
132.Koo, K.A., et al., In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med, 2005.71(8): p. 778-80.
133.Castello, P.R., D.A. Drechsel, and M. Patel, Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem, 2007. 282(19): p. 14186-93.
134.Choi, W.S., H.M. Klintworth, and Z. Xia, JNK3-mediated apoptotic cell death in primary dopaminergic neurons. Methods Mol Biol, 2011.758: p. 279-92.
135.Cocheme, H.M. and M.P. Murphy, Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem, 2008. 283(4): p. 1786-98.
136.Davies, C. and C. Tournier, Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans, 2012. 40(1): p. 85-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊