跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉哲維
研究生(外文):Che-Wei Liu
論文名稱:酞菁氯化鋁載子拆解層應用於改善有機上轉換元件電流增益效果之研究
論文名稱(外文):Elucidating the role of a charge generation layer of chloroaluminum phthalocyanine on the influence of current gain ratio in organic upconversion devices
指導教授:李志堅李志堅引用關係
指導教授(外文):Chih-Chien Lee
口試委員:劉舜維范慶麟徐世祥李志堅
口試委員(外文):Shun-Wei LiuChing-Lin FanShih-Hsiang HsuChih-Chien Lee
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:有機上轉換元件有機光偵測器有機發光二極體
外文關鍵詞:Organic upconversionOrganic photodetectorOrganic light emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們使用全有機系統作為有機上轉換元件之材料,並結合有機太陽能電池(Organic photovoltaic, OPV)、有機光偵測器(Organic photodetector, OPD)與有機電激發光二極體(Organic light emitting diode, OLED)之三者特性設計成有機上轉換元件,主要使不可見近紅外光(NIR)經由元件內部光→電→光之轉換為綠色可見光之波段,本篇論文使用單層酞菁氯化鋁 (Chloroaluminum phthalocyanine, ClAlPc)同時作為有機上轉換元件載子產生層以及暗電流電洞阻擋層,並以有機光偵測器之結構分析其特性,最終結合高效率有機磷光錯體發光二極體做為發光單元,並且比較本實驗室歷年上轉換元件的差異。
首先利用OPV結構驗證其使用單層ClAlPc之結構於780 nm光源照射下擁有單層載子拆解的特性,再完整分析以ClAlPc作為載子產生層(Charge generation layer, CGL)順偏壓驅動的有機光偵測器結構,最終結合有機磷光錯體發光二極體使載子產生層作為上轉換元件之電洞供應端,透過量測計算其擁有18.97% (p/p)上轉換效率以及1702 cd/m2之高亮度於照射NIR LED 5 mW/cm2強度下,且電流增益可高達70萬倍。
In this paper, we used all-organic system as the material of upconversion devices. The characteristics of upconversion device designs are combined with organic photovoltaic (OPV); organic photodetector (OPD) and organic light emitting diode (OLED). The devices mainly covert invisible near-infrared into the wavelength of visible green light through the internal photoelectric conversion. In this article, we make a single layer of Chloroaluminum Phthalocyanine used as the charge generation layer and the hole blocking layer of the organic upconversion device, and also completely analyzed the characteristics of organic photodetector.
First of all, the OPV structure was used to verify that the single layer of ClAlPc has the ability of exciton dissociation. Secondly, we completely analyze the characteristics of ClAlPc as charge generation layer and hole blocking layer OPD model under forward bias voltage. At last, we combined OPD with high current gain and phosphorescent exciplex OLED with high EQE in the upconversion device. It shows 18.97% of upconversion efficiency and 1702 cd/m2 of high luminance when it is irradiated by 5 mW/cm2 NIR LED.
目錄
中文摘要 ……………………………………………………………………...I
Abstract ……………………………………………………………………..II
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 上轉換元件研究文獻與開發背景整理 2
1.2.1 無機系統 7
1.2.2 混合系統 9
1.2.3 有機系統 17
1.3 有機上轉換元件未來發展 26
第二章 理論基礎 27
2.1 有機半導材料傳輸機制 27
2.2 有機光伏打電池光與光偵測器工作原理 30
2.3 有機發光二極體工作原理 34
2.4 有機上轉換元件工作原理 37
2.5 量測單位與指標 38
2.5.1 有機光發光二極體(OLED)量測單位與定義 38
2.5.2 有機光感測器與光伏打電池量測單位與定義 40
2.5.3 有機上轉換元件量測單位與定義 42
第三章 實驗儀器設備 44
3.1 實驗儀器 44
3.1.1 超音波清洗機 44
3.1.2 加熱板 44
3.1.3 旋轉塗佈機 45
3.1.4 紫外光曝光機 45
3.1.5 高真空熱蒸鍍系統 46
3.1.6 手套箱系統 48
3.1.7 氧電漿清潔機 50
3.1.8 膜厚量測系統(α-step) 51
3.1.9 輝度計 52
3.1.10 太陽光模擬器 52
3.1.11 外部量子效率量測系統 53
3.1.12 光電子光譜儀(AC-2) 54
3.1.13 UV光譜儀 54
3.1.14 NIR LED 55
3.1.15 LED驅動控制器 56
3.1.16 LDR量測系統 56
3.1.17 頻率響應以及Transient response量測系統 57
3.1.18 光功率計(Power Meter) 58
3.1.19 材料純化系統 58
3.2 實驗前置準備 59
3.2.1 有機材料純化 59
3.2.2 黃光微影製程(Photolithography) 59
3.3 實驗步驟 61
3.3.1 元件基板清洗 61
3.3.2 氧電漿清潔 61
3.3.3 真空熱蒸鍍製程 61
3.3.4 元件封裝 63
第四章 研究成果與討論 64
4.1 載子產生層材料之選擇 64
4.2 主動層特性之測試與分析 66
4.3 有機光偵測器(OPD)之特性探討 69
4.3.1 OPD載子產生層 69
4.3.2 完整結構探討 71
4.3.3 材料厚度對電性的影響 72
4.3.4 元件EQE及Responsivity 74
4.3.5 頻率響應與暫態響應 78
4.3.6 LDR量測 79
4.4 有機上轉換元件特性探討 80
4.4.1 發光單元的條件 80
4.4.2 載子產生層厚度對元件電性的探討 82
4.4.3 上轉換元件之反應速度 84
4.4.4 有機上轉換元件放光單元探討 85
第五章 結論 89
參考資料 …………………………………………………………………….90
[1] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik“Ultralow-power organic complementary circuits,” Nature., 15, 445 (2007).
[2] C. W. Tang and S. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
[3] C. W. Tang, “Two‐layer organic photovoltaic cell,” Appl. Phys. Lett, 48, 183 (1986).
[4] P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, “Polymer and Organic Nonvolatile Memory Devices,” Chem. Mater, 23, 341 (2011).
[5] J. Tao, J.Chen, D. Ban, M .G. Helander and Z. H. Lu, “Optical up-conversion devices for infrared detection and imaging,” Sci. Adv. Mater., 4, 266 (2012).
[6] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia, 2, 26 (2000).
[7] R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G. Lovhoiden and C. Vrancken, “Vein imaging: a new method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment,” Dermatol. Surg., 32, 1031 (2006).
[8] K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol., 4, 773 (2009).
[9] X. Gao, Y. Cui, R. M. Levenson, L.W.K.Chung and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol., 22, 969 (2004).
[10] J. S. Sandhu, A. P. Heberle, B. W. Alphenaar and J. R. A. Cleaver, “Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel,” Appl. Phys. Lett., 76, 1507 (2000).
[11] J. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada and K. Yase, “Organic light-emitting diode with TiOPc layer–a new multifunctional optoelectronic device,” Jpn. J. Appl. Phys., 40, L948 (2001).
[12] M. Chikamatsu, Y. Ichino, N. Takada, M. Yoshida, T. Kamata and K. Yase, “Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device,” Appl. Phys. Lett., 81, 769 (2002).
[13] K. J. Russell, I.Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson and A. C. Gossard, “Room- temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett., 82, 2960 (2003).
[14] H. Luo, D. Ban, H. C. Liu, P. J. Poole and M. Buchanan, “Pixelless imaging device using optical up-converter,” IEEE Electron Device Lett., 25, 129 (2004).
[15] D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. Spring Thorpe, R. Glew and M. Buchanan, “Optimized GaAs∕AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices,” J. Appl. Phys., 96, 5243 (2004).
[16] D. Ban, S. Han, Z. H. Lu, T. Oogarah, A. J. SpringThorpe and H. C. Liu, “Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector,” Appl. Phys. Lett., 90, 093108 (2007).
[17] J. Chen, D. Ban, X. Feng, Z. Lu, S. Fathololoumi, A. J. SpringThorpe and H. Liu, “Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror,” J. Appl. Phys., 103, 103112 (2008).
[18] D. Y. Kim, D. W. Song, N. Chopra, P. De Somer and F. So, “Organic infrared upconversion device,” Adv. Mater., 22, 2260 (2010).
[19] J. Chen, D. Ban, M. G. Helander, Z. H. Lu and P. Poole, “Near‐infrared inorganic/organic optical upconverter with an external power efficiency of>100%,” Adv. Mater., 22, 4900 (2010).
[20] Y. Okawa, S. Naka and H. Okada, “Enhancement of electron injection in organic light-emitting diodes with photosensitive charge generation layer,” Jpn. J. Appl. Phys., 50, 01BC11 (2011).
[21] D. Y. Kim, K. R. Choudhury, J. W. Lee, D. W. Song, G. Sarasqueta and F. So, “PbSe nanocrystal-based infrared-to-visible up-conversion device,” Nano Lett., 11, 2109 (2011).
[22] M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu and Y. Zeng, “Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion,” Org. Electron., 12, 2090 (2011).
[23] X. Chu, M. Guan, L. Li, Y. Zhang, F. Zhang, Y. Li, Z. Zhu, B. Wang and Y. Zeng, “Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization,” ACS Appl. Mater. Interfaces, 4, 4976 (2012).
[24] J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu and Z. Lu, “Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging,” Adv. Mater., 24, 3138 (2012).
[25] X. Chu, M. Guan, L. Niu, Y. Zeng, Y. Li, Y. Zhang, Z. Zhu and B. Wang, “Fast responsive and highly efficient optical upconverter based on phosphorescent OLED,” ACS Appl. Mater. Interfaces, 6, 19011 (2014).
[26] D. Y. Kim, T. H. Lai, J. W. Lee, J. R. Manders and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep., 4, 5946 (2014).
[27] S. W. Liu, C. C. Lee, C. H. Yuan, W. C. Su, S.Y. Lin, W. C. Chang, B. Y. Huang, C. F. Lin, Y. Z. Lee, T. H. Su and K. T. Chen, “Transparent organic upconversion devices for near-infrared sensing. ” Adv. Mater. 27, 1217 (2015).
[28] Wenli Lv, Junkang Zhong, Yingquan Peng, Yao Li, Xiao Luo, Lei Sun, Feiyu Zhao, Jianping Zhang, Hongquan Xia, Ying Tang, Sunan Xu and Ying Wang, “Organic near-infrared upconversion devices: Design principles and operation mechanisms” Org. Electron, 31, 258 (2016).
[29] H. Tachibana, N. Aizawa, Y Hidaka and T. Yasuda, “Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing” ACS Photonics, 4, 223 (2017).
[30] K. Strassel, A. Kaiser, S. Jenatsch, A. Veron, S. Babu, Anantharaman, E. Hack, M. Diethelm, F. A. Nuesch, R. Aderne, C. Legnani, S. Yakunin, M. Cremona and R. Hany “Squaraine Dye for Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm” ACS Appl. Mater. Interfaces, 10(13), pp 11063-11069 (2018)
[31] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys, 43, 5033 (1972).
[32] I. G. Hill, A. Kahn, Z. G. Soos, and J. Pascal, R.A., “Charge-separation energy in films of π-conjugated organic molecules, ” Chem. Phys. Lett., 327, 181, (2000).
[33] R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models,” J. Chem. Phys., 44, 3797 (1966).
[34] M. Knupfer, “Exciton binding energies in organic semiconductors, ” Appl. Phys., 77, 623 (2003).
[35] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M.Glatthaar, T. Meyer and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,”Sol. Energy Mater. Sol. Cells, 91, 379 (2007).
[36] B. Leckner, “The spectral distribution of solar radiation at the earth's surface-elements of a model,” Sol. Energy, 20, 143 (1978).
[37] P. Peumans, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., 93, 3693 (2003).
[38] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, ” Adv. Mater., 19, 1551 (2007).
[39] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, et al., “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy, ” J. Am. Chem. Soc., 130, 3030 (2008).
[40] J. L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges, ” Accounts Chem. Res., 42,1691 (2009).
[41] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys, 38, 2042 (1963).
[42] C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, “Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence,” Thin Solid Films, 363, 327 (2000).
[43] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151 (1998).
[44] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature, 440, 908 (2006).
[45] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson and A. J. Heeger, “High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm, ” Science, 325, 5948 (2009).
[46] Y. S. Park , S. Lee , K. H. Kim , S. Y. Kim , J. H. Lee and J. J. Kim, “Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency,”Adv. Funct. Mater., 23, 4914 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top