跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方駿杰
研究生(外文):Jiun-JieFang
論文名稱:以交流阻抗法探討氧化鉭電阻式記憶體雙極性電阻轉換過程
論文名稱(外文):The study of TaOx-based rram bipolar resistive switching process by impedance spectroscopy
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:200
中文關鍵詞:電阻式記憶體氧化鉭阻抗分析
外文關鍵詞:Resistive random-access memorytantalum oxideImpedance analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗使用以氧化鉭作為主動層的電阻式記憶體元件作討論,元件結構分別為Ta/TaOx/Pt、Ta/TaOx/ITO。吾人藉由量測兩種元件的電流-電壓曲線、元件在不同阻態及在不同直流偏壓下的特徵阻抗並同時搭配材料分析(XPS縱深分析、 Cross-sectional TEM)來了解這二個元件的阻態轉換機制。
論文的第一部份為材料分析部分,從Cross-sectional TEM 得知元件的主動層TaOx為非晶(amorphous);從XPS 縱深分析結果可知,在兩元件的Ta/TaOx在界面,同時存在Ta(0+)及Ta(+5),故吾人可推測,在Ta//TaOx界面可能存一層富含氧空缺的過渡層(Transition Region)。
論文的第二部分為電性量測部分,在此部分,吾人除了利用了Agilent 4156C量測了元件的電阻轉換曲線之外,也利用了Agilent 4294A量測了元件在初始狀態(Initial state)、低阻態(Low resistance state, LRS)及高阻態(How resistance state, HRS)下的阻抗。從元件的電阻轉換曲線結果得知Ta/TaOx/Pt、Ta/TaOx/ITO元件均屬於正偏壓寫入,負偏壓抹除的元件。從阻抗量測分析結果知,Ta/TaOx/Pt、Ta/TaOx/ITO元件在三種阻態下等效電路皆可用Rs-R//C來表示,且兩種元件在高阻態時的R值,均會大於在低阻態時的R值。
從上述可知,兩種元件的R在不同阻態下,皆會產生顯著的差異,這即是因在電阻轉換的過程中,存在於過渡層及主動層內的氧空缺會隨著所施加偏壓大小及極性的不同,而在主動層內移動,進而生成或破壞導電路徑(Conductive filament)而產生電阻轉換的現象所致。
論文的第三部分,為探討Ta/TaOx/Pt、Ta/TaOx/ITO兩種元件在阻態轉換過程中的阻抗變化。在此部分,吾人在量測阻抗的同時,會施以不同極性及大小的直流正負偏壓,來觀察元件在寫入或抹除的過程中,所呈現出的特徵阻抗。此部分的實驗結果顯示,從高阻態轉換至低阻態的過程時,兩種元件在不同大小的直流正偏壓下所得到的阻抗相對應的等效電路皆會先從簡單的Rs-R//C轉變為一複雜且含有電感的等效電路,在移除直流正偏壓之後,再轉變回Rs-R//C,且其中的R值,已由原來高阻值,轉變為低阻值,而等效電路的轉變,即表示元件主動層內的導電路徑會在施加正偏壓的過程中形成,且其大小及形狀在施加偏壓的過程中會不斷改變。另一方面,當吾人在量測阻抗的同時,施加不同大小的直流負偏壓於低阻態的Ta/TaOx/Pt、Ta/TaOx/ITO兩種元件,在不同大小的直流負偏壓下所呈現的等效電路大致上皆還是維持著Rs-R//C,且R會隨著施加負偏壓的過程逐漸提升,而這表示兩種元件內部的導電路徑會在施加直流負偏壓的過程中,逐漸消失。
至於使用Pt下電極與ITO兩種下電極其差異在於,ITO下電極相較於Pt下電極,其會在阻態轉換過程中吸收及釋放氧空缺,因此會對元件的阻態轉換過程產生明顯的影響,故從實驗結果可發現明顯的差異。首先,由不同阻態的阻抗分析結果知,Ta/TaOx/Pt、Ta/TaOx/ITO兩種元件在高低阻態時,所呈現的等效電路皆為Rs-R//C,然而,在高阻態時,Ta/TaOx/Pt元件的R值明顯會高於Ta/ TaOx/ITO元件;相反地,在低阻態時,Ta/TaOx/Pt元件的R值會明顯低於Ta/ TaOx/ITO元件。另一方面,從元件的電阻轉換特性曲線所得到的Vset及on/off ratio的二種參數可以發現到,Ta/TaOx/Pt元件皆大於Ta/TaOx/ITO元件。
Abstract
In this study, the resistance switching mechanisms of Ta/TaOx/Pt and Ta/TaOx/ITO devices are explored based on I-V sweeping curves, characteristic impedance and material characteristics.
First, TEM is used to investigate the thickness of the device and crystallinity of the TaOx films. Chemical bonding state in TaOx active layer is observed with XPS. Second, regarding to electrical properties of TaOx-based device, we not only use precision semiconductor parameter analyzer (Agilent 4156C) to get the resistive switching curve of TaOx-based device, but also use the precision impedance analyzer (Agilent 4294A)to get the characteristic impedance of TaOx-based device at different states and different dc bias.
The first part of this dissertation is about material characteristics of TaOx TEM, analysis reveals that TaOx is amorphous. Second, from the result of XPS, the chemical states of Ta(+0) and Ta(+5) are coexist near Ta/TaOx interface, so we can conclude that there is a oxygen vacancy-rich region, the Transition Region (TR), exist near Ta/TaOx interface.
The second part of this study is about electrical properties of TaOx-based devices. From resistive switching curves, both Ta/TaOx/Pt and Ta/TaOx/ITO devices can be operated in bipolar mode, with writing at positive bias and erasing at negative bias. The characteristic impedance at high and low resistance states of the two devices can be fitted with Rs-R//C model, and the value of R at high resistance state (HRS) is higher than at low resistance state (LRS) for both devices, which means that during the resistance-switching process, oxygen vacancies will be driven by different polarity bias to form or rupture the conductive filament.
In the third part of this study, we measure the impedance under positive and negative dc bias to observe the characteristic impedance during set and reset process. From the result of positive dc bias impedance measurement on the HRS devices, we found that the equilibrium circuit of the two devices will be first changed from Rs-R//C model into a complex model involving inductors, then turn back to Rs-R//C after removing positive bias. In the meaning time, the R changes from the initially high value to a low value, which means that the conductive filament will be formed and the shape of the filament will be changed during positive dc bias operation. From the result of negative dc bias impedance measurement on the LRS devices, the equilibrium circuit of the two devices will approximately maintain Rs-R//C, and the value of R for two devices is gradually become larger during negative biased impedance measurement, which means that the conductive filament in active layer will be ruptured during negative dc bias operation.
Regarding the differences of using Pt and ITO bottom electrodes is that, ITO bottom electrode will absorb or release oxygen vacancies during resistance switching process, which may affect the resistance-switching process, however, Pt bottom electrode will not.
So from the experiment, we can found that several difference between Ta/TaOx/Pt device and Ta/TaOx/ITO device. First, in high resistance state (HRS), the value of R fitted from Rs-R//C model in Ta/TaOx/Pt device is larger than Ta/TaOx/ITO device, however, in low resistance state (LRS) , the value of R fitted from Rs-R//C model in Ta/TaOx/Pt device is smaller than Ta/TaOx/ITO device. Second, the two electrical parameters of Vset and on/off ratio, which get from characteristic resistive switching curve, both in Ta/TaOx/Pt device are larger than in Ta/TaOx/ITO device.

Summary
The resistive switching process in oxide-based RRAM is generally originated from the formation-and-rupture of conductive filament via oxygen vacancies. However, to observe the filament evolution during resistive switching process is difficult. In our study, we measure impedance of RRAM at different resistance states to study the filament evolution during resistive switching.
Two TaOx-based resistive switching memories, Ta/TaOx/Pt and Ta/TaOx/ITO devices are investigated in this work. First, from the material analysis, we have found an oxygen vacancy rich region, the transition region, existing near Ta/TaOx interface. Secondly, from the analysis of impedance at different states for two devices, we can find that the impedance at different states all can be fitted with Rs-R//C circuit model, and the value of R for two devices in high resistance state is substantially larger than in low resistance state, which is the evidence to show that the filament rupture or formation during resistive switching process.
摘要 I
Abstract III
Extended Abstract V
誌謝 XII
總目錄 XIV
圖目錄 XVII
表目錄 XXVII

第一章 緒論 1
1-1 前言 1
1-2 研究目的及動機 4
第二章 理論基礎5
2-1 次世代非揮發性記憶體簡介 5
2-2 電阻式隨機存取記憶體(RRAM) 11
2-3 電阻轉換機制 11
2-4 介電層電流傳導機制 17
2-5 電阻式記憶體電流-電壓特性曲線 22
2-6 阻抗(Impedance) 24
2-7 電阻式記憶體特徵阻抗 54
第三章 實驗方法與實驗步驟 60
3-1 實驗材料 60
3-2 實驗設備 62
3-3 元件製備流程 63
3-4 分析儀器 66
第四章 材料分析結果討論 72
4-1試片命名與結構 72
4-2 Cross-Sectional TEM顯微結構觀察 74
4-3 XPS 縱深分析 80
第五章 氧化鉭電阻式記憶體電性分析 85
5-1 氧化鉭電阻式記憶體元件電性量測方式說明 85
5-2 TaOx-based 電阻式記憶體不同阻態阻抗量測 86
5-3 Ta/TaOx/Pt不同元件主動層厚度及不同截面積元件阻抗量測 101
5-4 TaOx-based device等效電路說明 114
第六章 氧化鉭電阻式記憶體直流壓阻抗分析 115
6-1 氧化鉭電阻式記憶體直流偏壓阻抗量測方式說明 115
6-2 Ta/TaOx/Pt元件直流偏壓阻抗量測 118
6-3 Ta/TaOx/ITO元件直流偏壓阻抗量測 144
6-4 TaOx-based電阻式記憶體 Stress-Current對應於Bode-Plot及Nyquist-Plot關係 169
第七章 氧化鉭電阻式記憶體電阻轉換機制討論 171
7-1 Ta/TaOx/Pt直流正偏壓電阻轉換機制討論 171
7-2 Ta/TaOx/Pt直流負偏壓電阻轉換機制討論 177
7-3 Ta/TaOx/ITO直流正偏壓電阻轉換機制討論 180
7-4 Ta/TaOx/ITO直流負偏壓電阻轉換機制討論 186
7-5 TaOx-based電阻式記憶體直流偏壓阻抗比較 190
7-6 TaOx-based電阻式記憶體電性比較 191
第八章 結論 193
第九章 參考文獻 195
[1] The International Technology Roadmap for Semiconductors, Emerging Research Devices Section (2013).

[2] X. Tong, W. Wu, Z. Liu, X. A. Tran, H. Y. Yu, and Y.-C. Yeo, Switching Model of TaOx-Based Nonpolar Resistive Random Access Memory, JapaneseJournal of Applied Physics, vol. 52, p. 04CD03, 2013.

[3] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,G.Medeiros-Ribeiro,R.S.Williams,High switching endurance in TaOx memristive devices,Applied Physics Letters, vol. 97, p. 232102, 2010.

[4] Q. Zhou and J. Zhai, The improved resistive switching properties of TaOx-based RRAM devices by using WNx as bottom electrode, Physica B:Condensed Matter, vol. 410, pp. 85-89, 2013.

[5] T. Liu, M. Verma, Y. H. Kang, and M. K. Orlowski, I-V Characteristics of Antiparallel Resistive Switches Observed in a Single Cu/TaOx/Pt Cell, Ieee Electron Device Letters, vol. 34, pp. 108-110, 2013.

[6] S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, S. Jeon.,Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate, Applied Physics Letters, vol. 99, p. 142110, 2011.

[7] J. Kwon, A. A. Sharma, J. A. Bain, Y. N. Picard, and M. Skowronski, Oxygen Vacancy Creation, Drift, and Aggregation in TiO2-Based Resistive Switches at Low Temperature and Voltage, Advanced Functional Materials, vol. 25, pp. 2876-2883, 2015.

[8] C. H. Cheng, A. Chin, and F. S. Yeh, Stacked GeO/SrTiOx Resistive Memory with Ultralow Resistance Currents, Applied Physics Letters, vol. 98, p. 052905, 2011.

[9] Z. Yan, Y. Guo, G. Zhang, and J. M. Liu, High-performance programmable memory devices based on co-doped BaTiO3, Adv Mater, vol. 23, pp. 1351-1355, 2011.

[10] Z. M. Liao, C. Hou, Q. Zhao, D. S. Wang, Y. D. Li, and D. P. Yu, Resistive switching and metallic-filament formation in Ag2S nanowire transistors, Small, vol. 5, pp. 2377-2381, 2009.

[11] T. W. Kim, H. Choi, S. H. Oh, M. Jo, G. Wang, B. Cho, D.Y.Kim, H.Hwang, T.Lee, Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure, Nanotechnology, vol. 20, p. 025201, 2009.

[12] S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory, Nanotechnology, vol. 24, p. 335201, 2013.

[13] E. Longo, L. S. Cavalcante, D. P. Volanti, A. F. Gouveia, V. M. Longo, J. A. Varela, M. O. Orlandi, Direct in situ observation of the electron-driven synthesis of Ag filaments on alpha-Ag2WO4 crystals, Sci Rep, vol. 3, p. 1676, 2013.

[14] Y.-L. Chung, W.-H.Cheng, J.-S.Jeng, W.-C.Chen, S.-A.Jhan, and J.-S. Chen, Joint contributions of Ag ions and oxygen vacancies to conducting filament evolution of Ag/TaOx/Pt memory device, Journal of Applied Physics, vol. 116, p. 164502, 2014.

[15] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol. 21, pp. 2632-2663, 2009.

[16] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt, Applied Physics Letters, 93, 223506 (2008).

[17] W. A. Hubbard, A. Kerelsky, G. Jasmin, E. R. White, J. Lodico, M. Mecklenburg, B. C. Regan, Nanofilament Formation and Regeneration During Cu/Al2O3 Resistive Memory Switching, Nano Lett, vol. 15, pp. 3983-3987, Jun 10 2015.

[18] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, B. Lee, S. Han, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nat Nanotechnol, vol. 5, pp. 148-153, 2010.

[19] S.-C. Na, J.-J.Kim, M. C. Chun, D. H. Jin, S.-E. Ahn, and B. S. Kang, Mechanism of the reset process in bipolar-resistance-switching Ta/TaOx/Pt capacitors based on observation of the capacitance and resistance, Applied Physics Letters, vol. 104, p. 123503, 2014.

[20] S. Lee, J. S. Lee, J.-B.Park, Y. Koo Kyoung, M.-J. Lee, and T. Won Noh, Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells, APL Materials, vol. 2, p. 066103, 2014.

[21] J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, Metal oxide memories based on thermochemical and valence change mechanisms, MRS Bulletin, vol. 37, pp. 131-137, 2012.

[22] D. Ielmini, R. Bruchhaus, and R. Waser, Thermochemical resistive switching:materials, mechanisms, and scaling projections, Phase Transitions, vol. 84, pp. 570-602, 2011.

[23] R. K. Katiyar, Y. Sharma, D. G. Barrionuevo Diestra, P. Misra, S. Kooriyattil, S. P. Pavunny, J. F. Scott, R. S. Katiyar, G. Morell, Unipolar resistive switching in planar Pt/BiFeO3/Pt structure, AIP Advances, vol. 5, p. 037109, 2015.

[24] A. Sawa, Resistive switching in transition metal oxides, Materials Today, vol. 11, pp. 28-36, 2008.

[25] S. Asanuma, H. Akoh, H. Yamada, and A.Sawa, Relationship between resistive switching characteristics and band diagrams ofTi/Pr1−xCaxMnO3 junctions, Physical Review B, vol. 80,

[26] F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, J.Verbeeck, G. Panaccione, R. Dittmann, Chemical insight into electroforming of resistive switching manganite heterostructures, Nanoscale, vol. 5, pp. 3954-3960, 2013.

[27] S. M. Sze and K. K. Ng, Physic of Semiconductor Devices.New Jersey: Wiley, p. 137, (2007).

[28] Y. Chen, H. Song, H. Jiang, Z. Li, Z. Zhang, X. Sun, D. Li, C.Miao, Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism, Applied Physics Letters, vol. 105, p. 193502, 2014.

[29] S. Yoo, T. Eom, T. Gwon, and C. S. Hwang, Bipolar resistive switching behavior of an amorphous Ge2Sb2Te5 thin films with a Te layer, Nanoscale, vol. 7, pp. 6340-6347, 2015.

[30] G. Ma, X. Tang, H. Su, H. Zhang, J. Li, and Z. Zhong, Effects of electrode materials on bipolar and unipolar switching in NiO resistive switching device, Microelectronic Engineering, vol. 129, pp. 17-20, 2014.

[31] Y. Sharma, P. Misra, S. P. Pavunny, and R. S. Katiyar, Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film, Applied Physics Letters, vol. 104, p. 073501, 2014.

[32] L. Zhong, L. Jiang, R. Huang, and C. H. de Groot, Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices, Applied Physics Letters, vol. 104, p. 093507, 2014.

[33] S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system, Phys Chem Chem Phys, vol. 17, pp. 12849-12856, 2015.

[34] David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics, 8th Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

[35] Mark E. Orazem and Bernard Tribollet, Electrical impedance spectroscopy ,John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.

[36] W. Lai and S. M. Haile, Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria, Journal of the American Ceramic Society, vol. 88, pp. 2979-2997, 2005.

[37] B. Y. Chang and S. M. Park, Electrochemical impedance spectroscopy, Annu Rev Anal Chem (Palo Alto Calif), vol. 3, pp. 207-229, 2010.

[38] http://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedanc e-spectroscopy/

[39] https://en.wikipedia.org/wiki/Electrical_impedance

[40] Robert L. Boylestad, Introductory circuit analysis, tenth edition, Prentice Hall ,Inc., New Jersey, 2002.

[41] C.-H. Lai and C.-Y.Liu, Direct current voltage sweep and alternating current impedance analysis of SrZrO3 memory device in ON and OFF states, Applied Physics Letters, vol. 103, p. 263505, 2013.

[42] J. Lee, E. M. Bourim, D. Shin, J.-S.Lee, D.-j. Seong, J. Park. M. Chang, S. Jung, J. Shin, H. Hwang, Analysis of interface switching for Nb doped SrTiO3 single crystal device using complex impedance spectroscopy, Current Applied Physics, vol. 10, pp. e68-e70, 2010.

[43] N. T. Ho, V. Senthilkumar, and Y. S. Kim, Impedance spectroscopy analysis of the switching mechanism of reduced graphene oxide resistive switching memory, Solid-State Electronics, vol. 94, pp. 61-65, 2014.

[44] X. L. Jiang, Y. G. Zhao, Y. S. Chen, D. Li, Y. X. Luo, D. Y. Zhao, Z. Sun, J. R.Sun, H. W. Zhao, Characteristics of different types of filaments in resistive switching memories investigated by complex impedance spectroscopy, Applied Physics Letters, vol. 102, p. 253507, 2013.

[45] Y. C. Bae, A. R. Lee, J. S. Kwak, H. Im, and J. P. Hong, Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2−x/Pt matrix, Current Applied Physics, vol. 11, pp. e66-e69, 2011.

[46] J. W. Yoon, J. H. Yoon, J. H. Lee, and C. S. Hwang, Impedance spectroscopic analysis on effects of partial oxidation of TiN bottom electrode and microstructure of amorphous and crystalline HfO2 thin films on their bipolar resistive switching, Nanoscale, vol. 6, pp. 6668-6678, 2014.

[47] C.-R. Park, S.-Y.Choi, Y.-H.You, M. K. Yang, S.-M.Bae, J.-K. Lee, J. H. Hwang, Impedance Spectroscopy Characterization in Bipolar Ta/MnOx/Pt Resistive Switching Thin Films, Journal of the American Ceramic Society, vol. 96, pp. 1234-1239, 2013.

[48] D. T. Simon, M. S. Griffo, R. A. DiPietro, S. A. Swanson, and S. A. Carter, Admittance spectroscopy of polymer-nanoparticle nonvolatile memory devices, Applied Physics Letters, vol. 89, p. 133510, 2006.

[49] M. Bojinov, S. Cattarin, M. Musiani, and B. Tribollet, Evidence of coupling between film growth and metal dissolution in passivation processes, Electrochimica Acta, vol. 48, pp. 4107-4117, 2003.

[50] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Inc., Minnesota, 1995.

[51] http://www.xpsfitting.com/2008/10/tantalum.html

[52] H. Demiryont, J. R. Sites, and K. Geib, Effect of oxygen content on the optical Properties of tantalum oxide films deposited by ion-beam sputtering, Applied Optics, 24, 490(1985).

[53] J. G. S. Moo, Z. Awaludin, T. Okajima, and T. Ohsaka, An XPS depth-profile study on electrochemically deposited TaOx, Journal of Solid State Electrochemistry, vol. 17, pp. 3115-3123, 2013.

[54] O. Kerrec, D. Devillers, H. Groult, and P. Marcus, Study of dry and electrogenerated Ta2O5 and Ta/ Ta2O5/Pt sturtures by XPS, Materials Science and Engineering B, 55, 134(1988).

[55] http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Ta

[56] K. K. Chiang, J. S. Chen, and J. J. Wu, Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure, ACS Appl Mater Interfaces, vol. 4, pp. 4237-4245, 2012.

[57] H. Y. Peng, Y. F. Li, W. N. Lin, Y. Z. Wang, X. Y. Gao, and T. Wu, Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation, Sci Rep, vol. 2, p. 442, 2012.

[58] A. Younis, D. Chu, and S. Li, Oxygen level: the dominant of resistive switching characteristics in cerium oxide thin films, Journal of Physics D: Applied Physics, vol. 45, p. 355101, 2012.
電子全文 電子全文(網際網路公開日期:20251231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳心田(2003),「人力來源、組織承諾與組織公民行為-軍事人口結構轉變過程的一項探索性研究」,管理評論,第22卷第3期,頁25-48。
2. 郭建志、章珮瑜、鄭伯壎(2002),「學校文化對教師效能的影響:以我國國民小學為例」,本土心理學研究,第17期。
3. 郭建志、鄭伯壎、王建忠(2001),「文化價值契合、工作性格與員工效能:遞增效度的分析」,中華心理學刊,第43卷第2期,頁175-187。
4. 吳萬益、林文寶(2002),「主管行為特性、組織文化、組織學習方式與經營績效關係之研究」,輔仁管理評論,第9卷第1期,頁71-94。
5. 林介鵬、張紹勳(2003),「工作滿足之因果模式-以台灣日商銷售人員為例」,管理學報,第20卷第3期,頁547-577。
6. 劉淑敏,1999,「泰勒法則在台灣的實証研究」,中央銀行季刊,第21卷第4期,頁79-96。
7. 侯德潛、田慧琦,2000 ,「通貨膨脹預測與泰勒法則-台灣地區實証分析」,中央銀行季刊,第22卷第3期,頁21-48。
8. 黃敏萍、鄭伯壎、王建忠(2003),「轉型領導、團隊內互動、及團隊與成員效能:IPO模式之驗證」,管理學報,第20卷第3期,頁397-427。
9. 鄭伯壎、郭建志(1993),「組織價值觀與個人工作效能符合度研究途徑」,中央研究院民族學研究所集刊,第75期,頁69-103。
10. 鄭伯壎(1995),「組織價值的上下契合度與組織成員個人的效能」,中華心理學刊,第37卷第1期,頁25-44。
11. 蔡坤宏(2000),「組織承諾、工作滿足與離職意圖的關係:Meta分析」,中華管理評論,第3卷第4期,頁33-49。
12. 鄧誠中、紀麗秋(2001),「組織中工作滿足之研究」,中華技術學院學報,3月,頁23-29。