|
[1] The International Technology Roadmap for Semiconductors, Emerging Research Devices Section (2013).
[2] X. Tong, W. Wu, Z. Liu, X. A. Tran, H. Y. Yu, and Y.-C. Yeo, Switching Model of TaOx-Based Nonpolar Resistive Random Access Memory, JapaneseJournal of Applied Physics, vol. 52, p. 04CD03, 2013.
[3] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,G.Medeiros-Ribeiro,R.S.Williams,High switching endurance in TaOx memristive devices,Applied Physics Letters, vol. 97, p. 232102, 2010.
[4] Q. Zhou and J. Zhai, The improved resistive switching properties of TaOx-based RRAM devices by using WNx as bottom electrode, Physica B:Condensed Matter, vol. 410, pp. 85-89, 2013.
[5] T. Liu, M. Verma, Y. H. Kang, and M. K. Orlowski, I-V Characteristics of Antiparallel Resistive Switches Observed in a Single Cu/TaOx/Pt Cell, Ieee Electron Device Letters, vol. 34, pp. 108-110, 2013.
[6] S. Jung, J. Kong, S. Song, K. Lee, T. Lee, H. Hwang, S. Jeon.,Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate, Applied Physics Letters, vol. 99, p. 142110, 2011.
[7] J. Kwon, A. A. Sharma, J. A. Bain, Y. N. Picard, and M. Skowronski, Oxygen Vacancy Creation, Drift, and Aggregation in TiO2-Based Resistive Switches at Low Temperature and Voltage, Advanced Functional Materials, vol. 25, pp. 2876-2883, 2015.
[8] C. H. Cheng, A. Chin, and F. S. Yeh, Stacked GeO/SrTiOx Resistive Memory with Ultralow Resistance Currents, Applied Physics Letters, vol. 98, p. 052905, 2011.
[9] Z. Yan, Y. Guo, G. Zhang, and J. M. Liu, High-performance programmable memory devices based on co-doped BaTiO3, Adv Mater, vol. 23, pp. 1351-1355, 2011.
[10] Z. M. Liao, C. Hou, Q. Zhao, D. S. Wang, Y. D. Li, and D. P. Yu, Resistive switching and metallic-filament formation in Ag2S nanowire transistors, Small, vol. 5, pp. 2377-2381, 2009.
[11] T. W. Kim, H. Choi, S. H. Oh, M. Jo, G. Wang, B. Cho, D.Y.Kim, H.Hwang, T.Lee, Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure, Nanotechnology, vol. 20, p. 025201, 2009.
[12] S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory, Nanotechnology, vol. 24, p. 335201, 2013.
[13] E. Longo, L. S. Cavalcante, D. P. Volanti, A. F. Gouveia, V. M. Longo, J. A. Varela, M. O. Orlandi, Direct in situ observation of the electron-driven synthesis of Ag filaments on alpha-Ag2WO4 crystals, Sci Rep, vol. 3, p. 1676, 2013.
[14] Y.-L. Chung, W.-H.Cheng, J.-S.Jeng, W.-C.Chen, S.-A.Jhan, and J.-S. Chen, Joint contributions of Ag ions and oxygen vacancies to conducting filament evolution of Ag/TaOx/Pt memory device, Journal of Applied Physics, vol. 116, p. 164502, 2014.
[15] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[16] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt, Applied Physics Letters, 93, 223506 (2008).
[17] W. A. Hubbard, A. Kerelsky, G. Jasmin, E. R. White, J. Lodico, M. Mecklenburg, B. C. Regan, Nanofilament Formation and Regeneration During Cu/Al2O3 Resistive Memory Switching, Nano Lett, vol. 15, pp. 3983-3987, Jun 10 2015.
[18] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, B. Lee, S. Han, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nat Nanotechnol, vol. 5, pp. 148-153, 2010.
[19] S.-C. Na, J.-J.Kim, M. C. Chun, D. H. Jin, S.-E. Ahn, and B. S. Kang, Mechanism of the reset process in bipolar-resistance-switching Ta/TaOx/Pt capacitors based on observation of the capacitance and resistance, Applied Physics Letters, vol. 104, p. 123503, 2014.
[20] S. Lee, J. S. Lee, J.-B.Park, Y. Koo Kyoung, M.-J. Lee, and T. Won Noh, Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells, APL Materials, vol. 2, p. 066103, 2014.
[21] J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, Metal oxide memories based on thermochemical and valence change mechanisms, MRS Bulletin, vol. 37, pp. 131-137, 2012.
[22] D. Ielmini, R. Bruchhaus, and R. Waser, Thermochemical resistive switching:materials, mechanisms, and scaling projections, Phase Transitions, vol. 84, pp. 570-602, 2011.
[23] R. K. Katiyar, Y. Sharma, D. G. Barrionuevo Diestra, P. Misra, S. Kooriyattil, S. P. Pavunny, J. F. Scott, R. S. Katiyar, G. Morell, Unipolar resistive switching in planar Pt/BiFeO3/Pt structure, AIP Advances, vol. 5, p. 037109, 2015.
[24] A. Sawa, Resistive switching in transition metal oxides, Materials Today, vol. 11, pp. 28-36, 2008.
[25] S. Asanuma, H. Akoh, H. Yamada, and A.Sawa, Relationship between resistive switching characteristics and band diagrams ofTi/Pr1−xCaxMnO3 junctions, Physical Review B, vol. 80,
[26] F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, J.Verbeeck, G. Panaccione, R. Dittmann, Chemical insight into electroforming of resistive switching manganite heterostructures, Nanoscale, vol. 5, pp. 3954-3960, 2013.
[27] S. M. Sze and K. K. Ng, Physic of Semiconductor Devices.New Jersey: Wiley, p. 137, (2007).
[28] Y. Chen, H. Song, H. Jiang, Z. Li, Z. Zhang, X. Sun, D. Li, C.Miao, Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism, Applied Physics Letters, vol. 105, p. 193502, 2014.
[29] S. Yoo, T. Eom, T. Gwon, and C. S. Hwang, Bipolar resistive switching behavior of an amorphous Ge2Sb2Te5 thin films with a Te layer, Nanoscale, vol. 7, pp. 6340-6347, 2015.
[30] G. Ma, X. Tang, H. Su, H. Zhang, J. Li, and Z. Zhong, Effects of electrode materials on bipolar and unipolar switching in NiO resistive switching device, Microelectronic Engineering, vol. 129, pp. 17-20, 2014.
[31] Y. Sharma, P. Misra, S. P. Pavunny, and R. S. Katiyar, Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film, Applied Physics Letters, vol. 104, p. 073501, 2014.
[32] L. Zhong, L. Jiang, R. Huang, and C. H. de Groot, Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices, Applied Physics Letters, vol. 104, p. 093507, 2014.
[33] S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system, Phys Chem Chem Phys, vol. 17, pp. 12849-12856, 2015.
[34] David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics, 8th Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
[35] Mark E. Orazem and Bernard Tribollet, Electrical impedance spectroscopy ,John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
[36] W. Lai and S. M. Haile, Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria, Journal of the American Ceramic Society, vol. 88, pp. 2979-2997, 2005.
[37] B. Y. Chang and S. M. Park, Electrochemical impedance spectroscopy, Annu Rev Anal Chem (Palo Alto Calif), vol. 3, pp. 207-229, 2010.
[38] http://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedanc e-spectroscopy/
[39] https://en.wikipedia.org/wiki/Electrical_impedance
[40] Robert L. Boylestad, Introductory circuit analysis, tenth edition, Prentice Hall ,Inc., New Jersey, 2002.
[41] C.-H. Lai and C.-Y.Liu, Direct current voltage sweep and alternating current impedance analysis of SrZrO3 memory device in ON and OFF states, Applied Physics Letters, vol. 103, p. 263505, 2013.
[42] J. Lee, E. M. Bourim, D. Shin, J.-S.Lee, D.-j. Seong, J. Park. M. Chang, S. Jung, J. Shin, H. Hwang, Analysis of interface switching for Nb doped SrTiO3 single crystal device using complex impedance spectroscopy, Current Applied Physics, vol. 10, pp. e68-e70, 2010.
[43] N. T. Ho, V. Senthilkumar, and Y. S. Kim, Impedance spectroscopy analysis of the switching mechanism of reduced graphene oxide resistive switching memory, Solid-State Electronics, vol. 94, pp. 61-65, 2014.
[44] X. L. Jiang, Y. G. Zhao, Y. S. Chen, D. Li, Y. X. Luo, D. Y. Zhao, Z. Sun, J. R.Sun, H. W. Zhao, Characteristics of different types of filaments in resistive switching memories investigated by complex impedance spectroscopy, Applied Physics Letters, vol. 102, p. 253507, 2013.
[45] Y. C. Bae, A. R. Lee, J. S. Kwak, H. Im, and J. P. Hong, Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2−x/Pt matrix, Current Applied Physics, vol. 11, pp. e66-e69, 2011.
[46] J. W. Yoon, J. H. Yoon, J. H. Lee, and C. S. Hwang, Impedance spectroscopic analysis on effects of partial oxidation of TiN bottom electrode and microstructure of amorphous and crystalline HfO2 thin films on their bipolar resistive switching, Nanoscale, vol. 6, pp. 6668-6678, 2014.
[47] C.-R. Park, S.-Y.Choi, Y.-H.You, M. K. Yang, S.-M.Bae, J.-K. Lee, J. H. Hwang, Impedance Spectroscopy Characterization in Bipolar Ta/MnOx/Pt Resistive Switching Thin Films, Journal of the American Ceramic Society, vol. 96, pp. 1234-1239, 2013.
[48] D. T. Simon, M. S. Griffo, R. A. DiPietro, S. A. Swanson, and S. A. Carter, Admittance spectroscopy of polymer-nanoparticle nonvolatile memory devices, Applied Physics Letters, vol. 89, p. 133510, 2006.
[49] M. Bojinov, S. Cattarin, M. Musiani, and B. Tribollet, Evidence of coupling between film growth and metal dissolution in passivation processes, Electrochimica Acta, vol. 48, pp. 4107-4117, 2003.
[50] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Inc., Minnesota, 1995.
[51] http://www.xpsfitting.com/2008/10/tantalum.html
[52] H. Demiryont, J. R. Sites, and K. Geib, Effect of oxygen content on the optical Properties of tantalum oxide films deposited by ion-beam sputtering, Applied Optics, 24, 490(1985).
[53] J. G. S. Moo, Z. Awaludin, T. Okajima, and T. Ohsaka, An XPS depth-profile study on electrochemically deposited TaOx, Journal of Solid State Electrochemistry, vol. 17, pp. 3115-3123, 2013.
[54] O. Kerrec, D. Devillers, H. Groult, and P. Marcus, Study of dry and electrogenerated Ta2O5 and Ta/ Ta2O5/Pt sturtures by XPS, Materials Science and Engineering B, 55, 134(1988).
[55] http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Ta
[56] K. K. Chiang, J. S. Chen, and J. J. Wu, Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure, ACS Appl Mater Interfaces, vol. 4, pp. 4237-4245, 2012.
[57] H. Y. Peng, Y. F. Li, W. N. Lin, Y. Z. Wang, X. Y. Gao, and T. Wu, Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation, Sci Rep, vol. 2, p. 442, 2012.
[58] A. Younis, D. Chu, and S. Li, Oxygen level: the dominant of resistive switching characteristics in cerium oxide thin films, Journal of Physics D: Applied Physics, vol. 45, p. 355101, 2012.
|