跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2025/11/27 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭舒維
研究生(外文):Shu-Wei Peng
論文名稱:預先磁化混凝劑對晶背研磨廢水混凝沉澱處理影響之研究
論文名稱(外文):Effects of Pre-Magnetized on Coagulation and Sedimentation Treatment of Backside Grinder Wastewater
指導教授:萬騰州萬騰州引用關係
指導教授(外文):Terng-Jou Wan
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:109
中文關鍵詞:晶背研磨廢水磁化濁度化學混凝
外文關鍵詞:Backside grinder wastewater、Magnetization effec
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
晶背研磨廢水中含多量奈米級的顆粒雜質,這些顆粒雜質具有高穩定分散狀態,因而造成濁度偏高及處理效果不彰,雖然目前法規中對濁度已無相當之限制排放標準,但濁度容易造成水質渾濁,不但影響觀瞻,在色度方面也較高,常造成大量的污泥產生、加藥量難以控制、用電量大幅提升、回收效果不彰、增加成本等問題。以致於不符合經濟效益且無法有效控制。本研究將針對混凝劑前處理進行晶背廢水之回收及再利用處理之研究,將混凝劑預先處理對晶背廢水處理效果之影響。針對化學混凝與混凝劑之不同機制因子進行探討分析。期望藉由不同條件的組合進行可行性研究,找出磁化效應對化學混凝機制之相關性。
預先磁化混凝劑造成混凝劑pH值下降、溫度上升、導電度上升,磁化1600G、8小時後FeCl2之pH值從2.67降至2.4,溫度上升44℃,導電度從1130 μs/cm上升至3140 μs/cm。化學混凝程序後,廢水濁度隨著FeCl2磁化時間增加,濁度下降以FeCl2(800G、4小時)而言為最佳,濁度下降至16.7 NTU,較未磁化FeCl2之濁度(31.6 NTU)減少40~50%。而預先磁化FeCl2亦達到改變原有的最佳加藥量,由原本的80 mg/L下降至40 mg/L(1200G、4小時)而言為最佳。而對混凝沉澱的速率而言,可從研究中顯示出在低磁場強度時,可加快沉澱速率接而縮短沉澱時間原本的1/3~1/2,用於實場可減少沉澱池的體積;而在高磁化強度時,其影響卻可能造成負面影響。
A large amount of nano-particles were stability state in backside grinder wastewater. Therefore, it caused high turbidity and decreased the efficiency of treatment. Although there is no restriction effluent standard for turbidity at present, but turbidity will cause the water quality to be muddy.It is not only influence the sighted , but also relatively higher degree in colorness. Amount of medicine added difficult control, power consumption improvement by a wide margin, retrieve result to be apparent to raise, increase issues such as the cost,etc. Does not accord with the economic benefits and unable to control effectively. Research this deal with, carry on brilliant recovery to carry waste water and utilize research that deal with to coagulant, pretreat coagulant to the brilliant influence which carries the waste water treatment result. Mix and congeal different mechanism''s factors with coagulant to carry on discussion analysis to chemistry. Expect to carry on feasibility research by the association of different conditions, finding out the magnetization effect will mix the relevance which congeals the mechanism to chemistry.
Pre-Magnetized on Coagulation cause coagulant pH drop, temperature rise, electric conduction degree rises, pH of FeCl2 after magnetization 1600G, 8 hours is dropped from 2.67 to 2.4, that temperature rises to 44℃, the electric conduction degree rises from 1130 μs/cm to 3140 μs/cm. After chemistry mixes the procedure of congealing, the turbid degree of waste water increases with FeCl2 magnetization time, turbid degree drops with FeCl2 (800G, 4 hours) And the speech is the best, turbidity drops to 16.7 NTU, has not magnetized turbid degree (31.6 NTU) of FeCl2 Reduce by 400%. And magnetize FeCl2 and also reach and change already existingly and add the medicine amount bestly in advance, drop to 40 mg/L (1200G, 4 hours) from original 80 mg/L And the speech is the best. But the speech of and the speed precipitated of congealing in drifting along, can demonstrate from studying in the intensity of low magnetic field, can accelerate precipitating the speed and connecting and shortening and precipitating original 1/3/2 of time, is used in the reducible volume of precipitating the pool in the real field; In the high magnetization intensity, its influence may cause the influence of reverse side.
摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖 目 錄 VII
表 目 錄 IX
第一章 緒論 1
1.1 研究緣起與背景 1
1.2 研究動機與目的 3
1.3 研究架構與流程 4
第二章 理論基礎與文獻回顧 6
2.1 半導體簡介 6
2.1.1 晶背研磨原理及特性分析 8
2.1.2 晶背研磨原理 8
2.1.3 研磨設備及流程 9
2.1.4 晶背研磨特性組成分析 12
2.1.5 半導體廢水處理技術簡介 16
2.2 電磁感應的影響與應用 22
2.2.1 磁場介紹 22
2.2.2 電磁場對水的影響 25
2.2.3 磁化技術(電磁感應)的應用 27
2.3 混凝理論 29
2.3.1 混凝機制 29
第三章 研究設備及方法 41
3.1.實驗處理對象及廢水來源 41
3.2.實驗設備及儀器 44
3.3.實驗方法與流程 49
3.3.1. 研究方法與方向 49
3.3.2. 杯瓶試驗 52
第四章 結果與討論 42
4.1 晶背研磨廢水水質特性及相關分析 42
4.1.1 晶背研磨廢水水質基本特性及組成分析 42
4.2 晶背研磨廢水傳統化學混凝相關處理參數 45
4.2.1 pH值與廢水濁度之關係 45
4.2.2 加藥量與廢水濁度之關係 46
4.3 磁化混凝劑性質之影響 47
4.3.1 磁化對混凝劑pH之影響 47
4.3.2 磁化對混凝劑溫度之影響 48
4.3.3 磁化對混凝劑電導度之影響 49
4.4 預先磁化混凝劑對晶背研磨廢水性質之影響 50
4.4.1 預先磁化混凝劑對晶背研磨廢水pH值之影響 51
4.4.2 預先磁化混凝劑對晶背研磨廢水溫度之影響 52
4.4.3 預先磁化混凝劑對晶背研磨廢水電導度之影響 53
4.4.4 預先磁化混凝劑對晶背研磨廢水加藥量之影響 54
4.4.5 預先磁化混凝劑對晶背研磨廢水沉澱速率之影響 64
第五章 結論與建議 75
5.1 結論 75
5.2 建議 77
1.Corlett, G.., 2000, “Targeting Water Use for Chemical Mechanical Polishing”, Solid State Technology, pp.201-206.
2.Golden, J. H., Small, R., Pagan, L., Shang, C., and Ragavan, S., 2000 , “Evaluating and Treating CMP Wastewater”, Semiconductor International, pp.85-98.
3.Maag, B., Boning, D., and Voelker, B. , 2000, “Assessing the Environmental Impact of Copper CMP” , Semiconductor International, http://www.semiconductor.net.
4.C. Touris, D.W. DePaoli, J.T. Shor, M.Z.-C. Hu, T.-Y. Ying, 2001, “Electrocoagulation for magnetic seeding of colloidal particles”, Physicochemical and Engineering Aspects 177, pp.233-233.
5.Michael J. Matteson, Regina L. Dobson, Robert W. Glenn, Jr., Nagesh S. Kukunoor, William H. Waits Ill, Eric J. Clayfield, 1995, “Electrocoagulation and separation of aqueous suspensions of ultrafine particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume:104, Issue:1, pp. 101-109.
6.Sheng H. Lin and Chung R. Yang, 2004, “Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication”, Journal of Hazardous Materials, Volume:108, Issue:1-2, pp. 103-109.
7.Gordon C.C. Yang, Tsung-Yang, Shiou-Huei Tsai, 2003, “Crossflow electro- microfiltration of oxide-CMP wastewater”, Water Research 37, pp.785-792.
8.Brown/e, S., Krygier, V., O’Sullivan, J., and Sandstrom, E. L. , 1999 , “Treating Wastewater from CMP Using Ultrafiltration”, Micro, pp.77-82.
9.Hong, S., S. Oh, and W. Huh. , 2002 , “Water Recycling From CMP Slurry by Coagulation”, 9th Annual ISESH Conference, San Diego, CA, June 9-13.
10.Huotari, H.M., I.H. Huisman, and G. Tragardh. , 1999,” Electrically Enhanced Crossflow Membrane Filtration of Oily Wastewaters Using the Membrane as a Cathode”, Journal of Membrane Science, Vol. 156, pp. 49-60.
11.Belongia, B.M., P.D. Haworth, J.C. Baygents, S.Raghavan. , 1999, “Treatment of Alumina and Slica Chemical Mechanical Polishing Waste by Electrodecantation and Electrocoagulation” , Journal of The Electrochemical Society,pp.4124-4130.
12.Touris, C., D.W. DePaoli, J.T. Shor, M.Z.-C. Hu,T.-Y. Ying. , 2000 “Electrocoagulation for magnetic seeding of colloidal particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects”, Volume: 177, Issue: 2-3, pp. 223 -233,February 28.
13.Lai, C.L., and S.H. Lin., 2004, “Treatment of chemical mechanical polishing wastewater by electrocoagulation : system performances and sludge settling characteristics”, Chemosphere ,Volume: 54, Issue: 3, pp.235-242, January.
14.Lin, S.H., and C.R. Yang, 2004, “Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication” , Journal of Hazardous Mayerials B108 pp.103-109.
15.Singer, P. C., K. Bilyk, 2002 , “Enhanced coagulation using a magnetic ion exchange resin”, Water Research ,Volume: 36, Issue: 16, pp. 4009-4022, September.
16.Lai, C.L., S.H. Lin, 2003 , “Electrocoagulation of chemical mechanical polishing (CMP)wastewater from semiconductor fabrication”,Chemical Engineering Journal 95, pp.205-211.
17.Matteson, M. J., R.L. Dobson, R.W. Glenn Jr; N.S Kukunoor, , W. H. Waits III, et. al., 1995 , “Electrocoagulation and separation of aqueous suspensions of ultrafine particles”, Physicochemical and Engineering Aspects 104, pp.101-109.
18.Hu, C.Y., S.L. Lo, C.M. Li, W.H. Kuan., 2005 , “Treatment chemical mechanical polishing(CMP) wastewater by electro-coagulation-flotation process with surfactant”, J Hazard Mater, Volume: 120, Issue: 1-3, pp.15-20, April.
19.Shahnaz, I, and M.T.Suidan, 1998 , “Electrolytic Denitrification: Long Term Performance And Effect of Current Intensity”, Depar- tment Of Civil Environmental Engineering,pp.528-536.
20.Namba, K., A. Sasao and S. Shibusawa., 1995 , “Effect of magnetic fiel on germination and plant growth”, Acta Hort. 399:143-147.
21.Hülya Yavuz and Serdar S. Çelebi, 2000, “Effects of magnetic field on activity of activated sludge in wastewater treatment”, Enzyme and Microbial Technology, , Volume 26, Issue 1, pp. 22-27.
22.Parsons, S.A., B.L. Wang, S.J. Judd and T. Stephenson, 1996 , “Magnetic treatment of calcium carbonate scale-effect of pH control”, Wat. Res., Vol.31, No.2, pp.339-342.
23.Coey, J.M.D., S. Cass, 2000 ,“Magnetic water treatment”, Journal of Magnetism and Magnetic Materials 209, pp.71-74.
24.Czaplicki, Z., N. Sedelnik, 2005 , “Dyeing of wool fabrics in electromagnetically treated water”,Institute of Natural Fibres, Poznań, Poland.
25.Adin, A. and T. Asano, 1998 , “The Role of Physical-Chemical Treatment in Wastewater Reclamation and Reuse”, Water Science and Technology, Vol.37, No.10, pp.79-90.
26.Al-Qodah, Z., W. Lafi, 2001 , “Modeling of antibiotics production in magneto three-phase airlift fermenter”, Biochemical Engineering Journal 7, pp.7-16.
27.Al-Qahtani, H., 1996 , “Effect of magnetic treatment on Gulf seawater”, Desalination 107, pp.75-81.
28.Berg, H., 1999 , “Problems of weak electromagnetic field effects in cell biology”, Bioelectrochemistry and Bioenergetics, Volume: 48, Issue: 2, pp. 355-360,May.
29.Shoda, M., 1996 , “Effect of high magnetic field on microbial activities measured under a newly constructed superconducting magnet biosystem”, Physica B 216, pp.409-411.
30.Simon A. Parsons, Bao-Lung Wang, Simon J. Judd and Tom Stephenson, 1997, “Magnetic treatment of calcium carbonate scale—effect of pH control”, Water Research, Volume 31, Issue 2,pp. 339-342.
31.Thomas Rheinländer, Róman Kötitz, Werner Weitschies and Wolfhard Semmler, 2000, “Magnetic fractionation of magnetic fluids”, Journal of Magnetism and Magnetic Materials, Volume 219, Issue 2, pp. 219-228.
32.Jiang, X., H. Xu, C.B. Jiang, S.K. Gong, 2000 , “The influence of stress and heat treatment on the magnetization of TbDyFe films”, Journal of Alloys and Compounds ,Volume: 311, Issue: 1, pp. 86-89, October.
33.Józefczak, A., A. Skumiel, M. Łabowski, 2003 , “Effects of the sweep rate of the magnetic field on the changes of ultrasonic wave velocity in magnetic fluid”, Journal of Magnetism and Magnetic Materials ,Volume: 258-259, pp. 474-476, March.
34.McLeod, K.J., H.J. Donahue, P.E. Levin ,M.A. Fontaine, and C.T. Rubin, 1993 , “Electric Fields Modulate Bone Cell Function in a Density-Dependent Manner”, Journal of Bone and Mineral Research, Vol. 8, No. 8, pp977-984.
35.Iusan, V., C.D. Buioca, S. Hadgia, 1999 , “Magnetic fluids of low viscosity”, Journal of Magnetism and Magnetic Materials 201, pp.38-40.
36.經濟部水資源局,2001,台灣地區水資源開發綱領計畫。
37.謝政寧,2004,精密光電元件之表面與次表面分析,國防大學中正理工學院,碩士論文。
38.鄧宗禹、黃志彬、邱顯盛,2002,“化學機械研磨廢液之處理與回收”,毫微米通訊,第九卷,第一期。
39.施延熙,2003,積體電路及彩色影像產業發展與用水需求,節約用水季刊,第29期。
40.馬榮華,2004,廠務科技與管理,揚智文化事業股份有限公司。
41.王建榮,2000,半導體平坦化CMP技術,全華科技圖書股份有限公司。
42.楊萬發,1995,半導體製造污染防治技術,經濟部工業局。
43.李惠嬌,2006,磁化效應對晶背研磨廢水混凝處理沉澱影響之研究,國立雲林科技大學環境與安全衛生工程研究所,碩士論文。
44.涂佳薇,2000,半導體化學機械研磨(CMP)廢液之資源化處理研究,成功大學資源工程研究所,碩士論文。
45.楊宗儒,2001,半導體化學機械研磨廢水之處理與回收,國立交通大學環境工程研究所,碩士論文。
46.鄭建南,2004,環保技術E報,經濟部,第19期。
47.陳彥旻,2003,半導體廠化學機械研磨廢水回收處理再利用技術研究,成功大學環境工程研究所,碩士論文。
48.張俊彥,1996,積體電路製程及設備技術手冊,中華民國經濟部技術處。
49.羅金生,2001,半導體廠化學機械研磨(CMP)廢水回收再利用可行性評估,臺灣大學環境工程研究所,碩士論文。
50.前田 和夫,2003,半導體製造裝置,鄭正忠譯,普林斯頓國際有限公司,台北縣。
51.蔡秀惠,2000,利用外加電場掃流微過濾程序處理化學機械研磨廢水之研究,國立中山大學,碩士論文。
52.劉訓瑜,2000,化學機械研磨廢水混凝沉澱效能之評估,國立交通大學環境工程研究所,碩士論文。
53.楊叢印,2003,結合電過濾-電透析技術處理CMP廢水並同步產製電解水之研究,國立中山大學環境工程研究所,博士論文。
54.黃志彬,2001,半導體製造業化學機械研磨廢水特性及其處理,工業污染防治,第20:3卷,第79期,第125-159頁。
55.詹耀富,1999,以柱槽溶氣浮選法回收二氧化矽奈米微粒之研究,成功大學資源工程研究所,碩士論文。
56.林家慶,1999,半導體廢水來源種類及水質成分。
57.黃俞昌,2005,科學園區節約用水之努力與作法,節約用水季刊,37期。
58.黃信仁、劉志成、曾國佑,2001,以超過濾處理半導體工廠化學機械研磨(CMP)廢水之研究,第二十六屆廢水處理技術研討會論文集。
59.鄭文桐、黃山峰,超微粒子分散技術與其應用概況,Journal of Chin Colloid & Interface Society, Vol.22,p.77-92, 1999。
60.謝志強,1996,半導體製程廢水回收使用之可行性評估,國立成功大學化學工程研究所,碩士論文。
61.楊金鐘、蔡秀惠,2001,利用外加電場掃流微過濾處理化學機械研磨廢水之研究,第二十六屆廢水處理技術研討會論文集光碟,高雄市。
62.楊金鐘、楊叢印,2002,結合電化學及薄膜技術處理暨回收晶圓廠化學機械研磨廢水,第一屆高科技工業環保技術及安全衛生學術及實務研討會論文集,第153-163頁,10月30-31日,新竹市。
63.陳富政,2003,利用同步電混凝/電過濾技術處理化學機械研磨廢水,中山大學環境工程研究所,碩士論文。
64.邱顯盛,2002,以電化學法處理化學機械研磨水,國立交通大學環境工程所,碩士論文。
65.詹耀富,1999,以柱槽溶氣浮選法回收二氧化矽奈米微粒之研究,成功大學資源工程研究所,碩士論文。
66.連介宇,2001,半導體工廠化學機械研磨廢水以浮除程序處理之研究,國立台灣科技大學化學工程研究所,碩士論文。
67.蘇揚根,,2003奈米微氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用,國立交通大學環境工程研究所,碩士論文。
68.吳宏基,2001,以超過濾薄膜結合混凝前處理回收半導體工業之研磨廢水,國立交通大學環境工程研究所,碩士論文。
69.羅金生,2001,半導體廠化學機械研磨(CMP)廢水回收再利用可行性評估,臺灣大學環境工程研究所,碩士論文。
70.陳清標,2000,基本電學I , 一版一刷,大中國圖書公司,臺北。
71.徐懷瓊,1994,台電核能月刊,台北。
72.萬騰州、花建佑、張書豪、陳榮崇、楊俊銘,2000,外加交流電流對活性污泥生物效應之評估,第二十五屆廢水處理技術研討會,p.110-118。
73.台灣電力公司,電力圖書館,http://www.taipower.com.tw/left_bar/power_life/electromagnetic_field/Any_is_the_electromagnetic.htm。
74.游薏雯,2000,磁場對二氧化矽粒子在(有機溶劑-水)中zeta電位的影響,國立臺灣大學化學工程學研究所,碩士論文。
75.劉雲、安燕,2000,磁化水及其溶液表面性質的研究,中科院化學所,大陸貴陽市。
76.花建佑,2002,磁場刺激效應對廢水生物處理系統生物活性之影響,雲林科技大學環境與安全工程系碩士班,碩士論文。
77.李用屏,2005,深層曝氣法處理甲醛工業廢水系統之改善,屏東科技大學環境工程與科學系,碩士論文。
78.楊喬宇,2004,探討哈耳電壓與水磁化變數之關係及其對水泥砂漿抗壓強度之影響,國立中央大學/土木工程研究所,碩士論文。
79.陳志邦,2004,分子動力學模擬水分子團簇受磁場之影響,國立成功大學機械工程學系專班,碩士論文。
80.籐本憲幸著,2002,磁化水革命,廖梅珠譯,青春出版社。
81.葉海坤,2001,磁能處理器,節水季刊,第24期。
82.馬豐源,2002,鍋爐用水磁化之探討 ,船舶與海運,19卷,p.89-95。
83.馬宗佑,1994,探討磁化水之霍爾效應對於砂漿抗壓強度之關係,國立中央大學/土木工程研究所,碩士論文。
84.蘇南、吳啟芳,2001,磁化水對飛灰混凝土工程性質之影響,土木水利半月刊,第20集。
85.王耀德,1999,磁性材料特性與量測方法簡介,中華民國磁性技術協會,pp122-125。
86.楊萬發,1993,廢水處理常用化學藥劑,經濟部工業局。
87.張晉,1999,水處理工程與設計(污水工程學)下,二版,鼎茂圖書出版有限公司,台北市。
88.黃正義,1992,小型污水處理廠,淑馨出版社,台北市。
89.黃政賢,1998,給水工程,高立圖書有限公司,台北市。
90.歐陽嶠暉,2005,下水道工程學,長松文化公司,台北市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top