跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝承諺
研究生(外文):Cheng-Yan Sie
論文名稱:多重技術探討抗壞血酸酯衍生物/D-α-生育酚聚乙二醇1000琥珀酸酯(TPGS)混合物之行為
論文名稱(外文):Behaviors of Ascorbic Acid Derivative/D-α-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) Mixtures: Multitechnique Investigation
指導教授:周宗翰
指導教授(外文):Tzung-Han Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:169
中文關鍵詞:奈米粒子相變化穩定性物化特徵經皮吸收
外文關鍵詞:Transdermal absorptionStabilityNanoparticlesPhase transitionPhysicochemical characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首次以改良式酒精注射法形成活性成分A奈米粒子,並添加D-α-生育酚聚乙二醇1000琥珀酸酯(D-α-Tocopheryl polyethylene glycol 1000 succinate, TPGS)以改善活性成分A奈米粒子分散液的穩定性。另外,與添加維生素E (α-Tocopherol, VE)於活性成分A奈米粒子相比,以探討聚乙二醇側鏈(PEG1000)的效應。以多重技術包含動態光散射儀(dynamic light scattering, DLS)、穿透式電子顯微鏡(Transmission electron microscope, TEM)、螢光光譜儀(Fluorescence spectrometer, FL)及微分掃描熱卡計(Differential scanning calorimetry, DSC)等探討不同莫耳比例下,混合A/TPGS和A/VE分散液之物化特徵。此外,藉由高效能液相層析儀(High performance liquid chromatography)探討不同濃度二硫蘇糖醇(dl-Dithiothreitol, DTT)對混合A/TPGS分散液化學穩定性之影響。以及使用Franz擴散槽進行體外經皮吸收試驗。在24℃下,結合Langmuir trough系統與螢光顯微鏡,量測氣/液界面上混合A/TPGS及混合A /VE單分子層之行為,並直接觀察單分子層間的形態。
混合A/TPGS及A /VE分散液會形成奈米粒子結構,然而,隨TPGS增加會使得活性成分A奈米粒子平均粒徑減少,其中以混合A/TPGS (6/4)分散液粒徑最小。A/TPGS (9.9/0.1)分散液可達到較多穩定天數。活性成分A主相變溫度為59.4℃,添加TPGS或VE時,使得活性成分A主要相變化熱焓量減少,尤其在XTPGS = 0.5或XVE = 0.1時相變化熱焓量即消失。比較同莫耳比例下混合A/TPGS及混合A /VE系統之結果,PEG-側鏈會使得混合分子間交互作用變大。於室溫時(活性成分A屬於膠態),隨TPGS或VE添加皆使得活性成分A奈米粒子膜內疏水區的流動性降低,其中添加TPGS會提高活性成分A膜表面分子間流動性,表示PEG-側鏈可軟化活性成分A膜內結構。在0.01M DTT濃度下,混合A/TPGS (9/1)分散液時最具有化學穩定性。另外,添加TPGS可提高活性成分A分散液滲透度,以混合A/TPGS (9/1)奈米粒子分散液在皮膚上的滲透量最高。由單分子層結果可知混合A/TPGS單分子層較混合A /VE單分子層具延展性(Expanded),可能因PEG立體障礙所導致。於低表面壓時,混合A/TPGS單分子層之過剩面積為負偏差,然而混合A /VE單分子層為正偏差,表示低表面壓時,PEG-側鏈可使得混合分子間排列較緊密。另外,於高表面壓時,混合A/TPGS與混合A/VE單分子層皆為正偏差,可能因此時分子間距離較小,使得鄰近PEG-側鏈易產生立體排斥力。過剩自由能和混合自由能結果顯示,混合A/TPGS單分子層分子間較具互溶性及具有熱力學上的穩定性。由螢光影像結果顯示,活性成分A分子會聚集成樹枝狀Domain,表示線張力的影響小於偶極排斥力。在固定表面壓下,添加TPGS使得活性成分A Domain變小且均勻分佈,表示TPGS會使得分子間較具延展性,另一方面,添加VE時,部分Domain變大且由樹枝狀轉成圓形狀,表示PEG立體排斥力會使得分子間較無凝聚力。
In this study, we found that compound A can form nanoparticles by a modified ethanol injection method for the first time, In order to improve the stability of compound A nanoparticles, D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) was added into compound A nanoparticles. In addition, the effects of polyethylene glycol chain (PEG1000) on compound A dispertions were investigated by compared with mixed A/α-Tocopherol (VE) nanoparticles. Physicochemical characteristics of mixed A/TPGS and A/VE nanoparticles were investigated by multi-techniques including dynamic light scattering (DLS), transmission electron microscope (TEM), fluorescence spectrometer and differential scanning calorimetry (DSC). High performance liquid chromatography (HPLC) was used to study the chemical stability of mixed A/TPGS dispersionss in different concentrations of dithiothreitol (DTT). Transdermal absorption studies of A/TPGS nanoparticles across the rat skin were investigated by using Franz diffusion cells. Furthermore, behavior of mixed A/TPGS and A/VE monolayers at the air/water interface were measured at 24 ℃ by Langmuir trough system combined with fluorescence microscopy.
Adding TPGS into compound A nanoparticles decreased average particle size among the A/TPGS systems, and mixed A/TPGS 6:4 dispersions showed the smallest average particle size. Mixed A/TPGS (9.9:0.1, mol ratio) dispersionss exhibited better storage stability than pure compound A dispersions. Main phase transition temperature of A dispersionss was found at 59.4 ℃. The phase transition temperature remained constant, and the enthalpy of the observable gel to liquid-crystalline phase transition decreased with increasing XTPGS or XVE, and the phase change enthalpy was eliminated at XTPGS = 0.5 or XVE = 0.1. By Comparing results of mixed A/TPGS with A/VE systems at the same molar ratio, PEG-chains was found to enhance the intermolecular interactions. At room temperature (compound A is under gel state), the incorporation of TPGS or VE into compound A membrane reduced the mobility in hydrocarbon chain region, and the presence of TPGS generally increased the molecular mobility of the interfacial region of the membrane. This indicated that PEG-chain may soften compound A membrane structure. The most chemical stability was found as the mixed A/TPGS (9:1) dispersions in 0.01M concentration of DTT. Adding TPGS can improve compound A dispersions permeability, and mixed A/TPGS (9/1) dispersions exhibited better transdermal efficacy absorption than pure compound A dispersionss. Monolayer results showed that mixed A/TPGS monolayers were more expanded than mixed A/VE monolayers, possibly resulting from PEG-chains steric barrier. Excess area results showed that the mixed A/TPGS monolayers were negative deviation and mixed A/VE monolayers were positive deviation at low surface pressure, implying PEG-chain makes intermolecular arrangement tighter. In addition, the mixed A/TPGS and A/VE monolayers were positive deviation at high surface pressure, which maybe caused by steric repulsive of neighboring PEG-chains. Excess Gibbs free energy and the free Gibbs energy results showed that mixed A/TPGS monolayer molecules were more miscible and thermodynamic stable than mixed A/VE monolayer. Fluorescence imaging results showed that compound A molecules aggregated into dendritic domain, indicating that the impact of line tension was less than the dipole repulsion. At constant surface pressure, adding TPGS into compound A domain make compound A Domain become smaller and uniformly distributed, indicating TPGS will make intermolecular more expaned. On the other hand, adding VE, part of the domain become large, and turn into circular shape by the dendrimers. This indicates that steric repulsion of PEG-chain will make intermolecular no cohesive interaction in mixed monolayers.
中文摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
符號說明 xvii
第一章 緒論 1
1-1前言 1
1-2研究目的與動機 2
第二章 文獻回顧 3
2-1膠體粒子 3
2-2活性成分A 4
2-3維生素E 5
2-4 D-α-生育酚聚乙二醇1000琥珀酸酯(TPGS) 6
2-5氣/液界面單分子層 7
2-6二硫蘇糖醇 8
第三章 實驗設備與方法 14
3-1實驗藥品 14
3-2實驗方法 14
3-2-1奈米粒子分散液製備流程 14
3-2-2粒徑分佈的量測 15
3-2-3界面電位的量測 16
3-2-4穿透式電子顯微鏡的觀察 17
3-2-5螢光偏極化的量測 17
3-2-6微分掃描熱卡計的量測 18
3-2-7混合A/TPGS 奈米粒子活性含量分析 19
3-2-8混合A/TPGS 9/1 with DTT活性含量分析 20
3-2-9體外皮膚滲透實驗 20
3-2-10單分子層技術 21
第四章 結果與討論 36
4-1混合A/TPGS分散液之物化特徵 36
4-1-1粒徑及界面電位 36
4-1-2型態觀察 37
4-1-3螢光偏極化 37
4-1-4相變行為 39
4-1-5混合A/TPGS分散液之pH值與導電度評估 40
4-2混合A/VE分散液之物化特徵 40
4-2-1粒徑及界面電位 40
4-2-2型態觀察 41
4-2-3螢光偏極化 42
4-2-4相變行為 43
4-3 PEG-側鏈對混合分散液物化特性之影響 43
4-4混合A/TPGS分散液之A和TPGS含量評估 44
4-5不同濃度DTT對混合A/TPGS分散液物化特徵之影響 45
4-6混合A/TPGS分散液之表面張力 45
4-7混合A/TPGS分散液之皮膚滲透行為 46
4-8混合A/TPGS單分子層 46
4-8-1表面壓-每分子佔據面積等溫線行為 46
4-8-2熱力學性質分析 47
4-8-3可壓縮係數分析 49
4-8-4螢光單分子層之表面形態 49
4-9混合A/VE單分子層 51
4-9-1表面壓-每分子佔據面積等溫線行為 51
4-9-2熱力學性質分析 52
4-9-3螢光單分子層之表面形態 53
第五章 結論 142
參考文獻 144
Alves, F. R., Zaniquelli, M. E. D., Loh, W., Castanheira, E. M. S., Real Oliveira, M. E. C. D., and Feitosa, E.: Vesicle–micelle transition in aqueous mixtures of the cationic dioctadecyldimethylammonium and octadecyltrimethylammonium bromide surfactants, Journal of Colloid and Interface Science, 316, 132-139, 2007.
Ballesteros, A., Kunamneni, A., Plou Gasca, F. J., and Torres, P.: Enzymatic modification for ascorbic acid and alpha-tocopherol to enhance their stability in food and nutritional applications, 2008.
Bilia, A. R., Bergonzi, M. C., Vincieri, F. F., Lo Nostro, P., and Morris, G. A.: A diffusion-ordered NMR spectroscopy study of the solubilization of artemisinin by octanoyl-6-O-Ascorbic acid micelles, Journal of Pharmaceutical Sciences, 91, 2265-2270, 2002.
Bisby, R. H., and Birch, D. J. S.: A time-resolved fluorescence anisotropy study of bilayer membranes containing α-Tocopherol, Biochemical and Biophysical Research Communications, 158, 386-391, 1989.
Chang, T., Benet, L. Z., and Hebert, M. F.: The effect of water-soluble vitamin E on cyclosporine pharmacokinetics in healthy volunteers, Clinical Pharmacology and Therapeutics, 59, 297-303,1996.
Chimote, G., and Banerjee, R.: Molecular interactions of cord factor with dipalmitoylphosphatidylcholine monolayers: Implications for lung surfactant dysfunction in pulmonary tuberculosis, Colloids and Surfaces B: Biointerfaces, 65, 120-125, 2008.
Czerwinkski, J., and Sondgeroth, J.: Moisturizing antimicrobial composition. Europe Patent: 2424354 A2, 2012.
Dintaman, J. M., and Silverman, J. A.: Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), Pharmaceutical Research, 16, 1550-1556, 1999.
Dong, X., Mattingly, C. A., Tseng, M., Cho, M., Adams, V. R., and Mumper, R. J.: Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization, European Journal of Pharmaceutics and Biopharmaceutics, 72, 9-17, 2009.
Fočo, A., Gašperlin, M., and Kristl, J.: Investigation of liposomes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection, International Journal of Pharmaceutics, 291, 21-29, 2005.
Fujinami, Y., Tai, A., and Yamamoto, I.: Radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl of Ascorbic acid 2-glucoside (AA-2G) and 6-acyl-AA-2G, Chemical &; Pharmaceutical Bulletin, 49, 642-644, 2001.
Fukushima, S., Ogiso, T., Kurata, Y., Shibata, M. A., and Kakizoe, T.: Absence of promotion potential for calcium L-ascorbate, L-ascorbic dipalmitate, L-ascorbic stearate and erythorbic acid on rat urinary bladder carcinogenesis, Cancer Letters, 35, 17-25, 1987.
Gopinath, D., Ravi, D., Rao, B. R., Apte, S. S., Renuka, D., and Rambhau, D.: Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications, International Journal of Pharmaceutics, 271, 95-113, 2004.
Gzyl-Malcher, B., Zembala, M., and Filek, M.: Effect of tocopherol on surface properties of plastid lipids originating from wheat calli cultivated in cadmium presence, Chemistry and Physics of Lipids, 163, 74-81, 2010.
Hatae. S.: Compositions for topical use having melanin synthesis-inhibiting activity. United States Patent: 4919921 A, 1990.
Heimburg, T.: A model for the lipid pretransition: Coupling of ripple formation with the chain-melting transition, Biophysical Journal, 78, 1154-1165, 2000.
Hossain, M. M., and Kato, T.: Line tension induced instability of condensed Domains formed in adsorbed monolayers at the air-water interface, Langmuir, 16, 10175-10183, 2000.
Hines, M., and Norman, G.: Topical skin care formulation. United States Patent: 8318222 B2, 2012.
Huang, P. H., Chuang, H. C., Chou, C. C., Wang, H., Lee, S. L., Yang, H. C., Chiu, H. C., Kapuriya, N., Wang, D., Kulp, S. K., and Chen, C. S.: Vitamin E facilitates the inactivation of the kinase Akt by the phosphatase PHLPP1, Science Signaling, 6, 2013.
Justo, O. R., and Moraes, &;Acirc;. M.: Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: Effect of temperature and batch volume, Chemical Engineering Research and Design, 89, 785-792, 2011.
Kalt, W., Forney, C. F., Martin, A., and Prior, R. L.: Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits, Journal of Agricultural and Food Chemistry, 47, 4638-4644, 1999.
Lee, S. C., Tsai, S. M., Lin, S. K., Chen B. H and Tsai, L. Y.: Stability of total Ascorbic acid in DTT-preserved plasma stored at 4℃, Journal of Food and Drug Analysis, 12, 217-220, 2004.
Lien, M. H., Huang, B. C., and Hsu, M. C.: Determination of ascorbyl dipalmitate in cosmetic whitening powders by liquid chromatography, Journal of Chromatography A, 645, 362-365, 1993.
Llabot, J. M., Palma, S. D., Manzo, R. H., and Allemandi, D. A.: Design of novel antifungal mucoadhesive films: Part I. Pre-formulation studies, International Journal of Pharmaceutics, 330, 54-60, 2007.
LoNostro, P., Capuzzi, G., Pinelli, P., Mulinacci, N., Romani, A., and Vincieri, F. F.: Self-assembling and antioxidant activity of some vitamin C derivatives, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 167, 83-93, 2000.
Margolis, S. A., and Duewer, D. L.: Measurement of Ascorbic acid in human plasma and serum: stability, intralaboratory repeatability, and interlaboratory reproducibility, Clinical Chemistry, 42, 1257-1262, 1996.
Masato, O.: An improved method for determination of l-Ascorbic acid and l-dehydroAscorbic acid in blood plasma, Clinica Chimica Acta, 103, 259-268, 1980.
Massey, J. B., She, H. S., and Pownall, H. J.: Interaction of vitamin E with saturated phospholipid bilayers, Biochemical and Biophysical Research Communications, 106, 842-847, 1982.
Matsukawa, H., Yagi, T., Matsuda, H., Kawahara, H., Yamamoto, I., Matsuoka, J., and Tanaka, N.: Ascorbic acid 2-glucoside prevents sinusoidal endothelial cell apoptosis in supercooled preserved grafts in rat liver transplantation, Transplantation Proceedings, 32, 313-317, 2000.
Maupas, C., Moulari, B., B&;eacute;duneau, A., Lamprecht, A., and Pellequer, Y.: Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells, International Journal of Pharmaceutics, 411, 136-141, 2011.
McConnell, H. M., and De Koker, R.: Equilibrium thermodynamics of lipid monolayer Domains, Langmuir, 12, 4897-4904, 1996.
Micol, V., Aranda, F. J., Villalain, J., and Gomez-Fernandez, J. C.: Influence of vitamin E on phosphatidylethanolamine lipid polymorphism, Biochimica et Biophysica Acta, 1022, 194-202, 1990.
Moribe, K., Maruyama, S., Inoue, Y., Suzuki, T., Fukami, T., Tomono, K., Higashi, K., Tozuka, Y., and Yamamoto, K.: Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs, International Journal of Pharmaceutics, 387, 236-243, 2010.
Muthu, M. S., Kulkarni, S. A., Xiong, J., and Feng, S. S.: Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells, International Journal of Pharmaceutics, 421, 332-340, 2011.
Muthu, M. S., Kulkarni, S. A., Raju, A., and Feng, S. S.: Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots, Biomaterials, 33, 3494-3501, 2012.
Needham, D., McIntosh, T. J., and Lasic, D. D.: Repulsive interactions and mechanical stability of polymer-grafted lipid membranes, Biochimica et Biophysica Acta, 1108, 40-48, 1992.
Nelson, D.: Differential scanning calorimetry of bilayer membrane phase transitions, Principles of Biochemistry, 3rd Ed., 2000.
Nishiyama, N., and Kataoka, K.: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery, Pharmacology &; Therapeutics, 112, 630-648, 2006.
Numata, K., Yamazaki, S., and Naga, N.: Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles, Biomacromolecules, 13, 1383-1389, 2012.
Nurse, K., Wilson, N., Lu, X., and Palefsky, I.: High spf sunscreen compositions. United States Patent: 20130028853 A1, 2013.
Ortiz, A., Aranda, F. J., and G&;oacute;mez-Fern&;aacute;ndez, J. C.: A differential scanning calorimetry study of the interaction of α-Tocopherol with mixtures of phospholipids, Biochimica et Biophysica Acta (BBA) - Biomembranes, 898, 214-222, 1987.
Parmentier, J., Hartmann, F. J., and Fricker, G.: In vitro evaluation of liposomes containing bio-enhancers for the oral delivery of macromolecules, European Journal of Pharmaceutics and Biopharmaceutics, 76, 394-403, 2010.
Parmentier, J., Becker, M. M. M., Heintz, U., and Fricker, G.: Stability of liposomes containing bio-enhancers and tetraether lipids in simulated gastro-intestinal fluids, International Journal of Pharmaceutics, 405, 210-217, 2011.
Paz S&;aacute;nchez-Migall&;oacute;n, M., Aranda, F. J., and G&;oacute;mez-Fern&;aacute;ndez, J. C.: Interaction between α-Tocopherol and heteroacid phosphatidylcholines with different amounts of unsaturation, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1279, 251-258, 1996.
Perkovic, S., and McConnell, H. M.: Cloverleaf monolayer Domains, The Journal of Physical Chemistry B, 101, 381-388, 1997.
Ratnam, D. V., Ankola, D. D., Bhardwaj, V., Sahana, D. K., and Kumar, M. N. V. R.: Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective, Journal of Controlled Release, 113, 189-207, 2006.
Roomi, M. W., House, D., Eckert-Maksic, M., Maksic, Z. B., and Tsao, C. S.: Growth suppression of malignant leukemia cell line in vitro by Ascorbic acid (vitamin C) and its derivatives, Cancer Letters, 122, 93-99, 1998.
Sawant, R. M., Hurley, J. P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T. S., and Torchilin, V. P.: "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers, Bioconjugate Chemistry, 17, 943-949, 2006.
Senior, J., and Gregoriadis, G.: Is half-life of circulating liposomes determined by changes in their permeability?, FEBS Letters, 145, 109-114, 1982.
Shah, A. R., and Banerjee, R.: Effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on surfactant monolayers, Colloids and Surfaces B: Biointerfaces, 85, 116-124, 2011.
Špiclin, P., Gašperlin, M., and Kmetec, V.: Stability of ascorbyl palmitate in topical microemulsions, International Journal of Pharmaceutics, 222, 271-279, 2001.
Srivastava, S., Phadke, R. S., Govil, G., and Rao, C. N. R.: Fluidity, permeability and antioxidant behaviour of model membranes incorporated with α-Tocopherol and vitamin E acetate, Biochimica et Biophysica Acta (BBA) - Biomembranes, 734, 353-362, 1983.
Stillwell, W., Ehringer, W., and Wassall, S. R.: Interaction of α-Tocopherol with fatty acids in membranes and ethanol, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1105, 237-244, 1992.
Takebayashi, J., Tai, A., Gohda, E., and Yamamoto, I.: Characterization of the radical-scavenging reaction of 2-O-substituted Ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study, Biological &; Pharmaceutical Bulletin, 29, 766-771, 2006.
Tanaka, H., and Yamamoto, R.: Pharmaceutical studies on Ascorbic acid derivatives. I. Syntheses of esters of Ascorbic acid and their physicochemical properties, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 86, 376-383, 1966.
Teeranachaideekul, V., Junyaprasert, V. B., Souto, E. B., and M&;uuml;ller, R. H.: Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology, International Journal of Pharmaceutics, 354, 227-234, 2008.
Urano, S., Iida, M., Otani, I., and Matsuo, M.: Membrane stabilization of vitamin E; interactions of α-Tocopherol with phospholipids in bilayer liposomes, Biochemical and Biophysical Research Communications, 146, 1413-1418, 1987.
Varma, M. V. S., and Panchagnula, R.: Enhanced oral paclitaxel absorption with vitamin E-TPGS: Effect on solubility and permeability in vitro, in situ and in vivo, European Journal of Pharmaceutical Sciences, 25, 445-453, 2005.
Villalain, J., Aranda, F. J., and G&;Oacute;Mez-Fern&;Aacute;Ndez, J. C.: Calorimetric and infrared spectroscopic studies of the interaction of α-Tocopherol and α-tocopheryl acetate with phospholipid vesicles, European Journal of Biochemistry, 158, 141-147, 1986.
Viseu, M. I., Correia, R. F., and Fernandes, A. C.: Time evolution of the thermotropic behavior of spontaneous liposomes and disks of the DMPC–DTAC aqueous system, Journal of Colloid and Interface Science, 351, 156-165, 2010.
Vollhardt, D., Emrich, G., Siegel, S., and Rudert, R.: Phase transition in monolayers of straight chain and 2-methyl branched alcohols at the air-water interface, Langmuir, 18, 6571-6577, 2002.
Wang, X., and Quinn, P. J.: The location and function of vitamin E in membranes (review), Molecular Membrane Biology, 17, 143-156, 2000.
Witting, L. A.: The role of polyunsaturated fatty acids in determining vitamin E requirement, Annals of the New York Academy of Sciences, 203, 192-198, 1972.
Yamada, Y., and Harashima, H.: Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases, Advanced Drug Delivery Reviews, 60, 1439-1462, 2008.
Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H., and Kawashima, Y.: Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions, Journal of Controlled Release, 102, 373-381, 2005.
Yang, X., Peng, Y., Yu, B., Yu, J., Zhou, C., Mao, Y., Lee, L. J., and Lee, R. J.: A covalently stabilized lipid−polycation−DNA (sLPD) vector for antisense oligonucleotide delivery, Molecular Pharmaceutics, 8, 709-715, 2011.
Zhang, Z., Tan, S., and Feng, S.-S.: Vitamin E TPGS as a molecular biomaterial for drug delivery, Biomaterials, 33, 4889-4906, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱啟潤、黃源協(2005,12月),評量居家照護服務品質之觀點。護理雜誌,52卷6期。
2. 邱啟潤、黃源協(2005,12月),評量居家照護服務品質之觀點。護理雜誌,52卷6期。
3. 林隆儀,2011,服務品質、品牌形象、顧客忠誠與顧客再購買意願的關係,中小企業發展季刊,第19期,P.33。
4. 林隆儀,2011,服務品質、品牌形象、顧客忠誠與顧客再購買意願的關係,中小企業發展季刊,第19期,P.33。
5. 李桂芳、李偉華、吳立偉、周稚傑、高東煒、高森永、劉麗雪(2012),社區醫療群醫師提供居家照護服務意願之調查。中華職業醫學雜誌,19(4),P.239-247。
6. 李桂芳、李偉華、吳立偉、周稚傑、高東煒、高森永、劉麗雪(2012),社區醫療群醫師提供居家照護服務意願之調查。中華職業醫學雜誌,19(4),P.239-247。
7. 李世代(2012)長期照護之界定與操作推動,領導護理,13(1),P.4-15。
8. 李世代(2012)長期照護之界定與操作推動,領導護理,13(1),P.4-15。
9. 王華娟、黃松林、賴紅汝 (2000)社區發展季刊,130期,長期照護保險建制與社會照顧,P.309-318。
10. 王華娟、黃松林、賴紅汝 (2000)社區發展季刊,130期,長期照護保險建制與社會照顧,P.309-318。
11. 王如華、謝淑芳(1997)人性化護理模式於臨床實務之應用,國防醫學,24(4),P.352-356。
12. 王如華、謝淑芳(1997)人性化護理模式於臨床實務之應用,國防醫學,24(4),P.352-356。
13. 郝溪明(1998),老人長期照護中家庭功能之初探。社區發展季刊,83,P.265-273。
14. 郝溪明(1998),老人長期照護中家庭功能之初探。社區發展季刊,83,P.265-273。
15. 劉曉雲(2012)社區老人長期照護之文獻探討。中華職業醫學雜誌,19(2),P.24-33。