|
A. Distributed Power and Micro-Grid Systems [1] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices,” in Proc. IEEE PESC, 2006, pp. 1-7. [2] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007, pp. 1-6. [3] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007. [4] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4. [5] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON, 2007, pp. 635-642. [6] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp. 518-525. [7] D. Kundu, “An overview of the distributed generation (DG) connected to the GRID,” in Proc. IEEE ICPST, 2008, pp. 1-8. [8] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 673-682, 2009. [9] M. V. Kirthiga and S. A. Daniel, “Optimal sizing of hybrid generators for autonomous operation of a micro-grid,” in Proc. IEEE IEEEI., 2010, pp. 864-868. [10] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., to appear, 2011. [11] G. M. Master, Renewable and Efficiency Electric Power Systems, New York: John Wiley & Sons Ltd, 2004. [12] J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2752-2758, 2008. [13] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725-733, 2006. [14] K. Amei, Y. Takayasu, T. Ohji and M. Sakui, “A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit,” in Proc. IEEE PCC., 2002, pp. 1447-1452. [15] I. schiemenz and M. Stiebler, “Control of a permanent magnet synchronous generator used in a variable speed wind energy system,” in Proc. IEEE IEMDC., 2001, pp. 872-877. [16] M. Heydari, A. Y. Varjani, M. Mohamadian and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine-switch AC/AC converter,” in Proc. IEEE PEDSTC., 2010, pp. 5-9. [17] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008. B. Switch-mode Rectifiers [18] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [19] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behaviour,” IET Proc. Elect. Power Appl., vol. 1, no .3, pp. 316-328, 2007. [20] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [21] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998. [22] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-peluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [23] U. Drofenik and J. W. Kolar, “Comparison of not synchronized sawtooth carrier and synchronized triangular carrier phase current control for the VIENNA rectifier I,” in Proc. IEEE ISIE, 1999, vol. 1, pp. 13-19. [24] J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. APEC, 1996, vol. 2, pp. 514-523. [25] C. M. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 952-957, 2003. [26] J. Minibock and J. W. Kolar, “Novel concept for mains voltage proportional input current shaping of a VIENNA rectifier eliminating controller multipliers,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 162-170, 2005. [27] N. B. Hadj-Youssef, K. Al-Haddad, H.Y. Kanaan and F. Fnaiech, “Small-signal perturbation technique used for DSP-based identification of a three-phase three-level boost-type Vienna rectifier,” IET Proc. Elect. Power Appl., vol. 1, no. 2, pp. 199-208, 2007. [28] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kW three-phase/switch/level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008. [29] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Large-signal modeling and steady-state analysis of a 1.5-kW three-phase/switch/level (Vienna) rectifier with experimental validation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1213-1224, 2008. [30] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008. [31] Rectifier Module VUM 25-05 for Three Phase Power Factor Correction Data Manual, IXYS Co., U.S.A., 2000. [32] C. H. Yeh, “DSP-based inverter systems with three-phase switch-mode rectifier front-end,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2009. [33] A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 994-1001, 2003. [34] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. PESC, 1994, vol. 2, pp. 1158-1163. [35] T. Jin, L. Li and K. M.Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 377-390, 2007. [36] R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with fault tolerant capability,” in Proc. PESC, 2000, vol. 1, pp. 359-364. [37] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004. C. DC/DC Converters and Front-End Converters [38] I. Sefa and O. Ozdemir, “Experimental study of interleaved MPPT converter for PV systems,” in Proc. IEEE IECON., 2009, pp. 456-461. [39] W. Li and X. He, “A family of isolated interleaved boost and buck converters with winding-cross-coupled inductors,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3164-3173, 2008. [40] I. Sefa and S. Ozdemir, “Multifunctional interleaved boost converter for PV systems,” in Proc. IEEE ISIE., 2010, pp. 951-956. [41] W. Li, Y. Zhao, Y. Deng and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2397-2408, 2010. [42] I. Cervantes, A. Mendoza-Torres, A. R. Garcia-Cuevas and F. J. Perez-Pinal, “Switched control of interleaved converters,” in Proc. IEEE VPPC., 2009, pp. 1156-1161. [43] R. Gules, L. L. Pfitscher and L. C. Franco, “An interleaved boost DC-DC converter with large conversion ratio,” in Proc. IEEE ISIE., 2003, pp. 411-416. [44] S. Y. Tseng, C. L. Ou, S. T. Peng and J. D. Lee, “Interleaved coupled-inductor boost converter with boost type snubber for PV system,” in Proc. IEEE ECCE., 2009, pp. 1860-1867. [45] A. S. Samosir, M. Anwari and A. H. M. Yatim, “Dynamic evolution control of interleaved boost DC-DC converter for fuel cell application,” in Proc. IEEE IPEC., 2010, pp. 869-874. [46] H. van der Broeck and I. Tezcan, “1 kw dual interleaved boost converter for low voltage applications,” in Proc. IEEE IPEMC., 2006, pp. 1-5. [47] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray and Z. Turgut, “Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4812-4815, 2009. [48] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389. [49] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892. [50] M. Jain, Jain, P.K. and M. Daniele, “Analysis of a bi-directional DC-DC converter topology for low power application,” in Proc. IEEE CCECE, 1997, vol.2, pp. 548-551. [51] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293. [52] H. Xu, G. Ma, C. Sun, X. Wen and L. Kong, “Implementation of a bi-directional DC-DC converter in FCEV,” in Proc. ICEMS, 2003, vol. 1, pp. 375-378. [53] M. Cacciato, F. Caricchi, F. Giuhlii and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, 2004, vol. 2, no.2, pp. 1127-1133. [54] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE VPPC., 2005, pp. 552-555. [55] J. Leuchter, P. Bauer, P. Bojda and V. Rerucha, “Bi-directional DC-DC converters for supercapacitor based energy buffer for electrical gen-sets,” in Proc. ECPEA, 2007, pp. 1-10. [56] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008. [57] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009. [58] Y. Du, X. Zhou, S. Bai, S. Lukic and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. APEC, 2010, pp. 1145-1151. [59] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877-1887, 2010. [60] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. D. Energy Storage Systems [61] L. Shengyi and R. A. Dougal, “Design and analysis of a current-mode controlled battery/ultracapacitor hybrid,” in Proc. IEEE IAS, 2004, vol. 2, pp. 1140-1145. [62] A. Yoshida, K. Imoto, H. Yoneda and A. Nishimo, “An electric double-layer capacitor with high capacitance and low resistance,” IEEE Trans. Compon. Hybrids, Manufacturing Manuf. Technol., vol. 15, no. 1, pp. 133-138, 1992. [63] C. Zhu, R. Lu, L. Tian and Q. Wang, “The development of an electric bus with super-capacitors as unique energy storage,” in Proc. VPPC., 2006, pp. 1-5. [64] T. A. Nergaard, J. F. Ferrell, L. G. Leslie and J. S. Lai, “Design considerations for a 48V fuel cell to split single phase inverter system with ultracapacitor energy storage,” in Proc. PESC, 2002, pp. 2007-2012. [65] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005. [66] D. L. Cheng and M. G. Wismer, “Active control of power sharing in a battery/ultracapacitor hybrid source,” in Proc. IEEE ICIEA, 2007, pp. 2913-2918. [67] F. S. Garcia, A. A. Ferreira and J. A. Pomilio, “Control strategy for battery-ultracapacitor hybrid energy storage system,” in Proc. IEEE APEC, 2009, pp. 826-832. [68] P. Thounthong, S. Rael and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009. [69] A. W. Stienecker, T. Stuart and C. Ashtiani, “A combined ultracapacitor-lead acid battery storage system for mild hybrid electric vehicles,” in Proc. IEEE VPPC, 2005, pp. 350-355. [70] S. M. Lukic, S. G. Wirasingha, F. Rodriguez, C. Jian and A. Emadi, “Power management of an ultracapacitor/battery hybrid energy storage system in an HEV,” in Proc. IEEE VPPC, 2006, pp. 1-6. [71] L. Shuai, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007. [72] M. Ortuzar, J. Moreno and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007. [73] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery, fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008. [74] A. B. Cultura and Z. M. Salameh, “Performance evaluation of a supercapacitor module for energy storage applications,” in Proc. IEEE PES, 2008, pp. 1-7. [75] C. Jian and A. Emadi, “A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles,” in Proc. IEEE VPPC, 2009, pp. 941-946. [76] L. Zhihao, O. Onar, A. Khaligh and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, 2009, pp. 591-596. [77] A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON, 2008, pp. 3347-3351. [78] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC micro-grid for super high quality distribution - system configuration and control of distributed generations and energy storage devices- ,” in Proc. IEEE PESC, 2006, pp. 1-7. E. Inverters and PWM Switching Methods [79] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed., New York: John Wiley & Sons Ltd, 2003. [80] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New York: John Wiley & Sons Ltd, 2003. [81] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed., New Jersey: Prentice-Hall, 2002. [82] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [83] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123. [84] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008. [85] E. Jung and S. K. Sul, “Implementation of grid-connected single-phase inverter based on FPGA,” in Proc. IEEE APEC, 2009, pp. 889-893. [86] A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008. [87] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008. [88] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737. [89] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994. [90] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009. [91] R. Gonzalez, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008. [92] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007. [93] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002. [94] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Control of single-stage single-phase PV inverter,” in Proc. EPE, 2005, pp. 1-10. [95] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 532-541, 1996. [96] H. Abe and H. Fujimoto, “Multirate prfect tracking control of single-phase inverter with inter sampling for arbitrary waveform,” in Proc. PCCON, 2007, pp. 810-815. [97] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. PESC, 2001, vol. 2, pp. 17-21. [98] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., 2001, vol. 148, no. 6, pp. 503-512. [99] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009. [100] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008. [101] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2724-2733, 2008. [102] W. Shireen and H. R. Nene, “DSP-based control for reliable fuel cell power systems with input ripple current compensation,” in Proc. PES, 2008, pp. 1-4. [103] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4, pp. 65-70. [104] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993. [105] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576. [106] H. Kim and K.H. Kim, “Filter design for grid connected PV inverters,” in Proc. ICSET, 2008, pp.1070-1075. [107] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664. [108] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance of PWM inverters for uninterruptible power supply,” in Proc. IEEE PESC, 1990, pp. 757-762. [109] T. C. Y. Wang, Y. Zhihong, S. Gautam and Y. Xiaoming, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, vol. 2, pp. 779-784. F. Others [110] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed., New Jersey, Prentice Hall Inc., 2002. [111] “Digital signal controller TMS320F28335 datasheet,” http://www.ti.com/lit/gpn /tms320f28335 [112] “Mitsubishi semiconductor CM100RL-12NF datasheet,” http://www.mitsubishichips. com/Global/content/product/power/powermod/igbtmod/nf/cm100rl-12nf_e.pdf [113] Y. L. Yang, “Development and digital control of inverter systems with galvanic isolation and front-end SMR,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2008. [114] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2010. [115] M. C. Chou, “Development of a permanent magnet synchronous motor driven satellite reaction wheel system” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2011.
|