跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張力仁
研究生(外文):Li-Jen Chang
論文名稱:多鬆弛時間半古典橢圓統計格子波茲曼法之流場模擬
論文名稱(外文):Semiclassical Multiple Relaxation Time Lattice Boltzmann-Ellipsoidal Statistical Method for Flow Simulation
指導教授:楊照彥
口試委員:陳朝光楊玉姿何正榮
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:115
中文關鍵詞:多鬆弛時間D2Q9格子速度模型橢圓統計BGK方程半古典格子波茲曼方法方腔流平行化運算
外文關鍵詞:Multiple Relaxation TimeD2Q9 lattice modelEllipsoidal Statistical BGK equationCavity flowsSemiclassical Lattice Boltzmann methodParallel computations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展以Uehling-Uhlenbeck Boltzmann-BGK方程(Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)與橢圓統計BGK方程(Ellipsoidal Statistical BGK Equation)與多鬆弛時間格子波茲曼方法(Multiple Relaxation Time Lattice Boltzmann Method,MRT-LBM)為基礎的多鬆弛時間半古典橢圓統計格子波茲曼方法。此方法利用Hermite展開法得到半古典橢圓統計平衡態分佈函數的Hermite展開式,並透過Chapman-Enskog展開得到鬆弛時間與黏滯係數間的關係。本文透過此方法,以D2Q9格子速度模型和反彈邊界為基礎,模擬方腔流流場問題。由不同雷諾數下模擬Bose-Einstein統計與Fermi-Dirac統計和Maxwell-Boltzmann統計的粒子展示此種方法,並由模擬結果比較單鬆弛時間半古典橢圓統計格子波茲曼方法(ES-SRT)與多鬆弛時間半古典橢圓統計格子波茲曼方法(ES-MRT)之差異性。同時,在OpenMP架構下建立平行化運算過程,達到降低計算時間的目的。

A Semiclassical Multiple Relaxation Time Lattice Boltzmann Ellipsoidal Statistical Method based on the Uehling-Uhlenbeck Boltzmann-BGK equation, Ellipsoidal Statistical BGK equation (ES-BGK) and Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is presented. The method is derived by expanding the Semiclassical equilibrium distribution function for Ellipsoidal Statistical method in term of Hermite polynomials, and the relationship between relaxation time and viscosity can be obtained by using Chapman-Enskog expansion. Simulations of the lid driven cavity flows based on D2Q9 lattice model, and Bounce-Back boundary condition are illustrated under Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics in different Reynolds numbers in the thesis. Based on the result of simulations, a comparison between ES-SRT and ES-MRT is proposed. Also, in order to reduce computing time, this work establishes parallel computations based on OpenMP.

誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
符號 XI
第一章 緒論 1
1-1 計算流體力學 1
1-2 格子波茲曼法(LATTICE BOLTZMANN METHOD)簡介 1
1-3 格子波茲曼法(LATTICE BOLTZMANN METHOD)文獻回顧 2
1-4 本文目的 3
1-5 本文架構 3
第二章 理論與統御方程式 5
2-1 氣體動力學 5
2-2 分佈函數 7
2-3 波茲曼方程式 7
2-4 波茲曼H定理與MAXWELL分布 11
2-5 MAXWELL分布 12
2-6 波茲曼BGK方程 14
2-7 格子波茲曼方程與速度模型 15
2-8 平衡態分布函數HERMITE展開 17
第三章 半古典格子波茲曼法 21
3-1 理想量子氣體動力學 21
3-2 半古典格子波茲曼方程 22
3-2-1 平衡態分布函數Hermite的展開 22
3-2-2 巨觀量求法 27
3-2-3 Chapman-Enskog分析 29
3-3 半古典橢圓統計格子波茲曼方程 32
3-3-1 平衡態分布函數Hermite的展開 33
3-3-2 巨觀量求法 34
3-3-3 單鬆弛時間Chapman-Enskog分析 36
第四章 多鬆弛時間半古典格子波茲曼法理論 40
4-1 多鬆弛時間LBE原理 40
4-2 多鬆弛時間統計半古典格子波茲曼法 43
4-3 多鬆弛時間橢圓統計半古典格子波茲曼法 45
4-4 多鬆弛時間橢圓統計CHAPMAN-ENSKOG分析 47
第五章 基本模型與邊界處理方式 55
5-1 多鬆弛時間橢圓統計格子波茲曼法 55
5-2 平行化方法與架構 55
5-2-1 OpenMP平行化介紹 56
5-2-2 格子波茲曼法平行化架構 57
5-3 邊界條件 57
5-4 收斂條件與計算流程 59
第六章 模擬結果與討論 61
6-1 方腔流 61
6-2 問題描述 62
6-3 模擬結果討論 64
第七章 結論與展望 111
7-1 結論 111
7-2 未來展望 112
參考文獻 113


[1]F. Higuera and J. Jimenez, "Boltzmann approach to lattice gas simulations," EPL (Europhysics Letters), vol. 9, p. 663, 1989.
[2]G. R. McNamara and G. Zanetti, "Use of the Boltzmann equation to simulate lattice-gas automata," Physical Review Letters, vol. 61, p. 2332, 1988.
[3]S. Leclaire, N. Pellerin, M. Reggio, and J. Tr&;#233;panier, "Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method," Journal of Physics A: Mathematical and Theoretical, vol. 47, p. 105501, 2014.
[4]K. N. Premnath and J. Abraham, "Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow," Journal of Computational Physics, vol. 224, pp. 539-559, 2007.
[5]S. C. Mishra and H. K. Roy, "Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method," Journal of Computational Physics, vol. 223, pp. 89-107, 2007.
[6]M. Mendoza and J. Munoz, "Three-dimensional lattice Boltzmann model for electrodynamics," Physical Review E, vol. 82, p. 056708, 2010.
[7]U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the Navier-Stokes equation," Physical Review Letters, vol. 56, pp. 1505-1508, 1986.
[8]Y. Qian, D. d''Humi&;#232;res, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation," EPL (Europhysics Letters), vol. 17, p. 479, 1992.
[9]P. L. Bhatnagar, E. P. Gross, and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical Review, vol. 94, p. 511, 1954.
[10]P. Lallemand and L.-S. Luo, "Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability," Physical Review E, vol. 61, p. 6546, 2000.
[11]J. S. Wu and Y. L. Shao, "Simulation of lid&;#8208;driven cavity flows by parallel lattice Boltzmann method using multi&;#8208;relaxation&;#8208;time scheme," International Journal for Numerical Methods in Fluids, vol. 46, pp. 921-937, 2004.
[12]X. Shan, X.-F. Yuan, and H. Chen, "Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation," Journal of Fluid Mechanics, vol. 550, pp. 413-441, 2006.
[13]J.-Y. Yang and L.-H. Hung, "Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases," Physical Review E, vol. 79, p. 056708, 2009.
[14]L.-S. Luo, W. Liao, X. Chen, Y. Peng, and W. Zhang, "Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations," Physical Review E, vol. 83, p. 056710, 2011.
[15]J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows," Journal of Fluid Mechanics, vol. 718, pp. 347-370, 2013.
[16]L. Wu, J. Meng, and Y. Zhang, "Kinetic modelling of the quantum gases in the normal phase," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 468, pp. 1799-1823, 2012.
[17]R. C. Coelho, A. Ilha, M. M. Doria, R. Pereira, and V. Y. Aibe, "Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion," Physical Review E, vol. 89, p. 043302, 2014.
[18]B. C. Eu and K. Mao, "Quantum kinetic theory of irreversible thermodynamics: Low-density gases," Physical Review E, vol. 50, p. 4380, 1994.
[19]J. F. Lutsko, "Approximate solution of the Enskog equation far from equilibrium," Physical Review Letters, vol. 78, p. 243, 1997.
[20]Q. Zou and X. He, "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," Physics of Fluids, vol. 9, pp. 1591-1598, 1997.
[21]G. Bird, "Molecular gas dynamics and the direct simulation monte carlo of gas flows," Clarendon, Oxford, vol. 508, 1994.
[22]沈清, 稀薄氣體動力學(Rarefied Gas Dynamics). 北京: 國防工業出版社, 2003.
[23]X. He and L.-S. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Physical Review E, vol. 56, p. 6811, 1997.
[24]H. Grad, "Note on N&;#8208;dimensional hermite polynomials," Communications on Pure and Applied Mathematics, vol. 2, pp. 325-330, 1949.
[25]蔡博臣, "基於半古典橢圓統計波茲曼方程之格子波茲曼法," 臺灣大學應用力學研究所學位論文, 2013.
[26]P. A. Dirac, "On the theory of quantum mechanics," Proceedings of the Royal Society A, vol. 112, pp. 661-677, 1926.
[27]A. Einstein, Quantentheorie des einatomigen idealen Gases: Akademie der Wissenshaften, in Kommission bei W. de Gruyter, 1924.
[28]洪立昕, "半古典晶格波滋曼方法," 臺灣大學應用力學研究所學位論文, pp. 1-147, 2010.
[29]H. Struchtrup, Macroscopic transport equations for rarefied gas flows: Springer, 2005.
[30]D. d''Humi&;#232;res, "Multiple–relaxation–time lattice Boltzmann models in three dimensions," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 360, pp. 437-451, 2002.
[31]A. Mezrhab, M. Amine Moussaoui, M. Jami, and H. Naji, "Double MRT thermal lattice Boltzmann method for simulating convective flows," Physics Letters A, vol. 374, pp. 3499-3507, 2010.
[32]R. Du, B. Shi, and X. Chen, "Multi-relaxation-time lattice Boltzmann model for incompressible flow," Physics Letters A, vol. 359, pp. 564-572, 2006.
[33]L.-S. Lin, Y.-C. Chen, and C.-A. Lin, "Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios," Computers &; Fluids, vol. 45, pp. 233-240, 2011.
[34]J. T&;#246;lke, "Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA," Computing and Visualization in Science, vol. 13, pp. 29-39, 2010.
[35]張榮貴等, 多核心高效能程式開發:使用OpenMP及OpenCL實例. 新北市: 碩亞數碼科技, 2013.
[36]S. Chen, D. Martinez, and R. Mei, "On boundary conditions in lattice Boltzmann methods," Physics of Fluids, vol. 8, pp. 2527-2536, 1996.
[37]U. Ghia, K. N. Ghia, and C. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," Journal of Computational Physics, vol. 48, pp. 387-411, 1982.
[38]D. Patil, K. Lakshmisha, and B. Rogg, "Lattice Boltzmann simulation of lid-driven flow in deep cavities," Computers &; Fluids, vol. 35, pp. 1116-1125, 2006.
[39]S. K. Pandit, "On the use of compact streamfunction-velocity formulation of steady Navier-Stokes equations on geometries beyond rectangular," Journal of Scientific Computing, vol. 36, pp. 219-242, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊