跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/18 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威宇
研究生(外文):Wei-Yu Chen
論文名稱:奈米複合碳材應用於能源元件之研究
論文名稱(外文):Nano-Carbon Composites for Energy Device Applications
指導教授:謝建德謝建德引用關係
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:226
中文關鍵詞:活性碳纖維、奈米碳管、電雙層電容、超疏水行為、電化學活性、燃料電池
外文關鍵詞:activated carbon fibercarbon nanotubeselectric double-layer capacitance, superhydrophibicelectrochemical activityfuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用觸媒催化化學氣相沉積法,搭配乙炔氣及奈米鎳金屬分別做為碳源及觸媒,將奈米碳管均勻裝飾於聚丙烯氰(polyacrylonitrile)活性碳纖維表面,形成擁有雙階層粗糙表面(奈米碳管與微米級活性碳纖維)之三維複合碳結構。表面水滴接觸角測試証實植入奈米碳管能改變表面結構,提升固、液、氣三相接觸面之不連續性,減少液滴與基材表面接觸面積,將原本疏水介面轉換為超疏水介面。此外,本研究搭配次微米之二氧化矽球及奈米碳管於活性碳纖表面,開發出一種穩定且具有低水滴遲滯角之超疏水結構。吾人利用改良之Cassie-Baxter模型進行分析,以探討三階層粗糙度對固液接觸面比例之影響。
另一方面,複合碳材於硫酸電解質中之電化學行為,證實奈米碳管的植入不但改善電極內部之分散電容效應及電位降,也同時提供更多高效率充放電下之電雙層電容。批覆奈米碳管於碳紙上之複合碳材,經氣相氧化法表面改質後,擁有不同之表面氧化程度。實驗結果顯示,表面氧化改質可提升複合碳材之親水性及電化學比電容量,要歸因於氧化處理後,碳材表面擁有更多活性位置提供電雙層吸附(電雙層電容)及氧化還原反應(假電容)。除了氧化改質外,本研究利用以下流程進行胺官能機團之批覆,包括(i) 化學氧化、(ii) 醯氯化處理、(iii) 胺化改質。經胺化改質之複合碳材經測試,其擁有高電化學比電容量、高充放電效率、高穩定性與高庫倫效率。
第三部分,本研究利用新穎之微波輔助還原法,合成奈米級電化學白金觸媒於複合碳材表面。在經過1000次電化學循環測試後發現,白金觸媒不只擁有高電化學活性(高電化學比表面積),更呈現高循環穩定性。一維線材結構之奈米碳管,其高導電性有助於白金觸媒更有效地進行電化學氧化還原反應。換句話說,奈米碳管之存在,不只做為觸媒載體,並能提供觸媒與氣體擴散層間之電子傳導通道。此外,本研究以利用微波輔助還原法製備不同之高活性及高穩定性之雙金屬觸媒(白金-鈷、白金-錫),並應用於甲醇氧化反應(白金-鋅)。實驗結果證實,兩階段之微波輔助還原法能有效提升雙金屬觸媒之活性、抗毒化能力及長效穩定性。


A chemical vapor deposition was employed for decorating the carbon nanotubes (CNTs) onto polyacrylonitrile-based active carbon fabrics (ACF), using acetylene and Ni nanoparticle as carbon precursor and catalyst, respectively. The contact angle of water significantly increases which confirms that the wettability of carbon fabric has shifted to superhydrophobicity due to the structural transformation. Besides, a stable superhydrophobic surface with low contact angle hysteresis using microscale carbon fabrics decorated with submicroscale SiO2 spheres and CNTs is created. A modified Cassie-Baxter model analyzes that the combined effect of SiO2 spheres and CNTs contributes a high area fraction of a water droplet in contact with air, leading to superhydrophobicity.
On the other hand, the electrochemical behavior of the carbon electrodes in H2SO4 indicated that the presence of nanotubes not only decreases the distributed capacitance effect and IR drop but also induces double-layer formation and high-rate capability. Gaseous oxidation of carbon papers (CPs) decorated with CNTs with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. Amino-functionalization of CNTs attached to CP has been achieved using one synthesis protocol: (i) chemical oxidation, (ii) acyl chlorination, and (iii) amidation. The N-modified CNT/CP capacitor exhibits an enhanced capacitance, high-rate capability, and capacitance stability with high coulombic efficiency.
A facile microwave-assisted polyol (MP) approach to synthesize catalysts on carbon composite was presented. The Pt deposits, with an average size of 3–5 nm were uniformly coated over the surface of oxidized CNTs. The Pt catalysts showed not only fairly good electrochemical activity but also durability after a potential cycling of > 1000 cycles. CNTs significantly reduced both connect and charge transfer resistances. With the aid of CNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway. Bimetallic catalysts with high and stable electrochemical activity toward sulfuric acid (Pt-Co, Pt-Sn) and methanol oxidation (Pt-Zn) were proposed. Experimental results confirmed that two-stage MP synthesis enables the improvement of electrochemical activity, antipoisoning ability and long-term durability of the binary catalyst.


ABSTRACT I
CHINESE ABSTRACT/中文摘要 III
ACKNOWLEDGEMENT/誌謝 V
LIST OF FIGURES IX
LIST OF TABLES XVII
CHAPTER 1. INTRODUCTION 1
1.1 Preface 1
1.2 Motivation 4
CHAPTER 2. LITERATURE REVIEW 5
2.1 Carbon materials 5
2.1.1 Features and applications 5
2.1.2 Carbon nanotubes 8
2.1.3 Active carbon fabrics and carbon papers 13
2.2 Surface modifications of carbon materials 17
2.2.1 Surface oxidation 17
2.2.2 Surface amidation 22
2.3 Surface repellency 24
2.3.1 Surface water and oil repellency 24
2.3.2 Impact on surface chemistry 30
2.3.3 Impact on Physical morphology 34
2.3.4 Cassie state and Wenzel state 36
2.4 Principle of electrochemistry 38
2.4.1 Faradic and non-Faradic process 38
2.4.2 Structure of electrochemical double layer 40
2.4.3 Electrochemical double-layer capacitance 44
2.4.4 Electrochemical techniques 46
CHAPTER 3. EXPERIMENTAL 51
3.1 Materials and Chemicals 51
3.2 Instruments and Apparatus 53
3.3 Experimental Procedures 55
3.3.1 Fluorinated carbon composites with two-tier roughness 55
3.3.2 Carbon composites with fluoro-silica coating 58
3.3.3 Silica-carbon composites with three-tier roughness 61
3.3.4 Carbon composites for electrochemical electrodes 63
3.3.5 Oxidized carbon composite for electrochemical electrodes 65
3.3.6 Amino-functionalized carbon composite for electrochemical electrodes 68
3.3.7 Pt-loaded carbon composites used for electrochemical catalysts 72
3.3.8 Pt-Co loaded carbon composite for electrochemical catalysts 75
3.3.9 Pt-Sn loaded carbon composite for electrochemical catalysts 78
3.3.10 Pt-Zn loaded carbon composite for electrochemical catalysts 81
CHAPTER 4. RESULTS & DISCUSSION-1 Surface Repellency 84
4.1 Introduction 84
4.2 Characterization and Water Repellency of Carbon Nanotube/Carbon Fabric Composites with Two-tier Roughness 86
4.3 The Water/Oil Repellency and Sliding Behavior of Carbon Nanotube/Carbon Paper Composites 94
4.4 Characterization and Superhydrophobicity of Silica/Carbon Composites with Three-tier Roughness 107
4.5 Summary 115
CHAPTER 5. RESULTS & DISCUSSION-2 Energy Storage 116
5.1 Introduction 116
5.2 Charaterization and Electrochemical Behavior of Cabon Nanotube/Carbon Fabric Composite Electrodes 118
5.3 Influence of Oxidation Level on Capacitance of Carbon Nanotube/Carbon Paper Composite Electrodes 131
5.4 Capacitive Behavior of Amino-Functionalized Carbon Nanotube/Carbon Paper Composite Electrodes 145
5.5 Summary 162
CHAPTER 6. RESULTS & DISCUSSION-3 Catalyst Supports 163
6.1 Introduction 163
6.2 Electrochemical Activity and Stability of Pt Catalysts on Carbon Nanotube/Carbon Paper Composite Electrodes 166
6.3 Deposition and Activity Stability of Pt–Co Catalysts on Carbon Nanotube-based Electrodes Prepared by Microwave-assisted Synthesis 178
6.4 Electrochemical activity and durability of Pt−Sn alloys on carbon-based electrodes prepared by microwave-assisted synthesis 190
6.5 Electrochemical Activity, Antipoisoning and Lonf-term Duribility of Pt-Zn Electrocatalysts on Carbon Nanotube/Carbon Paper Composite Electrodes for Methanol Oxidation 203
6.6 Summary 214
CHAPTER 7. CONCLUSIONS 215
REFERENCES 217


[1]K. Kinoshita, Carbon: electrochemical and physicochemical properties, New York: John & Wiley, 1987: 14-7.
[2]C.T. Hsieh, H. Teng, Carbon 40 (2002) 667.
[3]J.N. Nian, H. Teng, J Phys Chem B 109 (2005) 10279.
[4]Y.M. Shyu, F.C.N. Hong, Diamond Relat. Mater. 10 (2001) 1241.
[5]R.Ma, B. Wei, C. Xu, J. Liang, D. Wu, J. Mater. Sci. Lett. 19 (2000) 1929.
[6]H.T. Kim, J.K. Lee, J. Kim, J. Power Sources 180 (2008) 191.
[7]S.A. Brewer, C.R. Willis, Appl. Surf. Sci. 254 (2008) 6450.
[8]Y.H. Lin, X.L. Cui, C.H. Yen, C.M. Wai, Langmuir 21 (2005) 11474.
[9]C.T. Hsieh, J.Y. Lin, J. Power Sources 188 (2009) 347.
[10]M. Gangeri, G. Centi, A.L. Malfa, S. Perathoner, R. Vieira, C. Pham-Huu, M.J. Ledoux, Catal. Today 102 (2005) 50.
[11]M.Y. Wang, J.H. Chen, Z. Fan, H. Tang, G.H. Deng, D.L. He, Y.F. Kuang, Carbon 42 (2004) 3257.
[12]C.T. Hsieh, J.Y. Lin, J.L. Wei, Int. J. Hydrogen Energy 34 (2009) 685.
[13]Y.T. Wu, C.C. Hu, J. Electrochem. Soc. 151 (2004) A2060.
[14]Y.R. Nian, H. Teng, J. Electroanal. Chem. 540 (2003) 119.
[15]C.T. Hsieh, Y.T. Lin, Micropor. Mesopor. Mater. 74 (2006) 99.
[16]R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483.
[17]Z.H. Yang, H.Q. Wu, Chem Phys Lett 343 (2001) 235.
[18]H.J. Ahn, J.I. Sohn, Y.S. Kim, H.S. Shim, W.B. Kim, T.Y. Seong, Electrochem Commun 8 (2006) 513.
[19]K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv Mater 13 (2001) 497.
[20]K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, J Electrochem Soc 149 (2002) A1058.
[21]J.H. Park, J.M. Ko, O.O. Park, J Electrochem Soc 150 (2003) A864.
[22]J.L. Stevens, A.Y. Huang, H. Peng, I.W. Chiang, V.N. Khabashesku, J.L. Margrave, Nano Lett 3 (2003) 331.
[23]X. Wang, X. Liu, L. Lai, S. Li, J. Weng, Z. Zhou, et al. ,Adv Funct Mater;18 (2008) 1809.
[24]K.T. Lau, D. Hui, Compos. Part B-Eng. 33 (2002) 263.
[25]S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104 (1996) 2089.
[26]M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, “Fullerenes and Carbon Nanotubes” Academic, San Diego, 1996.
[27]E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61 (2001) 1899.
[28]R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61 (2000) 2981.
[29]C.H. Chen, Q. Cai, C. Tsai, C.L. Chen, G. Xiong, Y. Yu, et al., Appl Phys Lett 90 (2007) 173108.
[30]D. Li, Y. Xia, Nano Lett 4 (2004) 933.
[31]Y.F. Yin, T. Mays, B. McEnaney, Langmuir 15 (1999) 8714.
[32]Y.H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Carbon 41(2003) 2787.
[33]C.T. Hsieh, J.M. Chen, R.R. Kuo, Y.H. Huang, Appl Phy Lett 84 (2004) 1186.
[34]G. Gabriel, G. Sauthier, J. Fraxedas, M. Moreno-Mañas, M.T. Martínez, Miravitlles C, et al. Carbon 44 (2006) 1891.
[35]J.H. Kim, K.W. Nam, S.B. Ma, K.B. Kim Carbon 44 (2006) 1963.
[36]B. Zhang, J. Liang, C.L. Xu, B.Q. Ruan, D.H. Wu, Mater Lett 51 (2001) 539.
[37]J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Carbon 40 (2002) 1193.
[38]S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, A. Oya, Electrochem Commun 4 (2002) 593.
[39]C.T. Hsieh, Y.W. Chou, J.Y. Lin, Chem. Phys. Lett. 444 (2007) 149.
[40]A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386 (1997) 377-379.
[41]http://endomoribu.shinshu-u.ac.jp/research/image/index.html
[42]http://www.kynol.com/NewFiles/activated%20carbon%20w%20pics.html
[43]http://cleanlinkfilter.en.made-in-china.com/product/eoGxXOSckCWg/China-Activated-Carbon-Fiber-Filter-Mesh-CF-Z-.html
[44]D. Qu, H. Shi, J. Power Sources 74 (1998) 99.
[45]X. Liu, T. Osaka, J. Electrochem. Soc. 144 (1997) 3066.
[46]I. Tanahashi, A. Yoshida, A. Nishino, Carbon 28 (1990) 477.
[47]I. Tanahashi, A. Yoshida, A. Nishino, J. Electrochem. Soc., 137 (1990) 3052.
[48]H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559.
[49]S. Lowell, J.E. Shields, Powder Surface Area and Porosity, Chapman & Hall, New York, 1991.
[50]http://www.fuelcellstore.com/en/pc/viewPrd.asp?idproduct=609&IDCategory=83
[51]Y. Wang, Z. Iqbal, S.V. Malhotra, Chem Phys Lett 402 (2005) 96.
[52]D.R. Shobha Jeykumari, S. Ramaprabhu, S. Sriman Narayanan, Carbon 45 (2007) 1340.
[53]V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al. Carbon 46 (2008) 833.
[54]T. Casagrande, G. Lawson, H. Li, J. Wei, A. Adronov, I. Zhitomirsky Mater Chem Phys 111 (2008) 42.
[55]K. Zhang, J.Y. Lim, H.J. Choi, Diam Relat Mater 18 (2009) 316.
[56]T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, J. Power Sources 60 (1996) 239.
[57]H. Shi, Electrochim. Acta 41 (1996) 1633.
[58]Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi, J. Power Sources 60 (1996) 219.
[59]Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008.
[60]J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala, J. Electrochem. Soc. 144 (1997) L309.
[61]A. Nakamura, T. Inui, N. Kinomura, T. Suzuki, carbon 38 (2000) 1361.
[62]F. Adib, A. Bagreev, T. Bandosz, Langmuir 16 (2000) 1980.
[63]Z.R. Yue, W. Jiang, L. Wang, S.D. Gradner, C.U. Pittman Jr., Carbon 37 (1999) 1785.
[64]M. Ishikawa, A. Sakamoto, M. Morita, Y. Matsuda, K. Ishida. J. Power Sources 60 (1996) 233.
[65]J. Koresh, A. Soffer, J. Electrochem. Soc.124 (1990) 1379.
[66]J.S. Ye, X. Liu, H.F. Cui, W.D. Zhang, F.S. Sheu, T.M. Lim, Electrochem. Commum. 7 (2005) 249.
[67]G. Vuković, A. Marinković, M. Obradović, V. Radmilović, M. Ćolić, R. Aleksić, et al. Appl Surf Sci 225 (2009) 8067.
[68]L. Shao, Y. Bai, X. Huang, Z. Gao, L. Meng, Y. Huang, et al. Mater Chem Phys 116 (2009) 323.
[69]W. Li, C. Gao, H. Qian, J. Ren, D. Yan, J Mater Chem 16 (2006) 1852.
[70]K.V. Singh, R.R. Pandey, X. Wang, R. Lake, C.S. Ozkan, K. Wang, et al. Carbon 44 (2006) 1730.
[71]J. Li, Z. Fang, L. Tong, A. Gu, F. Liu, J Appl Polym Sci 106 (2007) 2898.
[72]K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, and K.K. Gleason Nano. Lett. 3 (2003) 1701.
[73]C. Neinhuis, W. Barthlott, Ann. Bot. 79 (1997) 667.
[74]W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Öner, J. Youngblood, T.J. McCarthy, Langmuir 15 (1999) 3395.
[75]D. Quéré, Nat. Mater. 1 (2002) 14.
[76]R. Blossey, Nat. Mater. 2 (2003) 301.
[77]K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano. Lett. 3 (2003) 1701.
[78]S.A. Brewer, C.R. Willis, Appl. Surf. Sci. 254 (2008) 6450.
[79]Z. Wang, N. Koratkar, L. Ci, P.M. Ajayan, Appl. Phys. Lett. 90 (2007) 143117.
[80]C.T. Hsieh, J.M. Chen, Y.H. Huang, R.R. Kou, C.T. Lee, H.C. Shih, J. Vac. Sci. Technol., B 24 (2006) 113.
[81]C.T. Hsieh, W.S. Fan, Appl. Phys. Lett. 88 (2006) 243120.
[82]D. Xu, H. Liu, L. Yang, Z. Wang, Carbon 44 (2006) 3226.
[83]Y.C. Hong, H.S. Uhm, Appl. Phys. Lett. 88 (2006) 244101.
[84]J. Wang, Y. Wen, J. Hu, Y. Song, Adv. Funct. Mater. 17 (2007) 219.
[85]C.T. Hsieh, W.Y. Chen, F.L. Wu, Carbon 46 (2008) 1218.
[86]C.T. Hsieh, F.L. Wu, S.Y. Yang, Surf. Coat. Technol. 202 (2008) 6103.
[87]http://en.wikipedia.org/wiki/Lotus_effect
[88]http://thehappylivingshop.com/blog/?p=45
[89]http://superhydrophobiccoating.com/super-hydrophobic-droplet-16/
[90]D. Oner, T.J. McCarthy, Langmuir 16 (2000) 7777.
[91]X. Liu, X. Wang, Y. Liang, F. Zhou, J. Colloid Interface Sci. 336 (2009) 743.
[92]X. Gao, X. Yao, L. Jiang, Langmuir 23 (2007) 4886.
[93]C.I. Park, H.E. Jeong, S.H. Lee, H.S. Cho, K.Y. Suh, J. Colloid Interface Sci. 336 (2009) 298.
[94]Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, J. Phy. Chem. C 112 (2008) 11403.
[95]L. Gao, T.J. McCarthy, Langmuir 22 (2006) 5998.
[96]J.H.Wang, P.M.Claesson, J.L. Parker, H. Yasuda, Langmuir 10 (1994) 3887.
[97]P.N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou, Langmuir 24 (2008) 11225.
[98]Y. Zhao, M. Li, Q. Lu, Z. Shi, Langmuir 24 (2008) 12651.
[99]V.V. Berejnov, J. Colloid Interface Sci. 322 (2008) 246.
[100]E. Pierce, F.J. Carmona, A. Amirfazli, Colloids Surf. A 323 (2008) 73.
[101]M. Bouteau, S. Cantin, F. Benhabib, F. Perrot, J. Colloid Interface Sci. 317 (2008) 247.
[102]S. Suzuki, A. Nakajima, Y. Kameshima, K. Okada, Surf. Sci. 557 (2004) L163.
[103]K. Li, P. Wu, Z. Han, Polymer 43 (2002) 4079.
[104]R.E. Johnson, R.H. Dettre, Adv. Chem. Ser. 43 (1964) 112.
[105]H. Kobayashi, M.J. Owen, Macromolecules 23 (1990) 4929.
[106]C.T. Hsieh, J.M. Chen, R.R. Kuo, T.S. Lin, C.F. Wu, Appl. Surf. Sci. 240 (2005) 318.
[107]S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, J. Colloid Interface Sci. 208 (1998) 287.
[108]L. Cao, T.P. Price, M. Weiss, D. Cao, Langmuir 24 (2008) 1640.
[109]http://www.surface-tension.de/solid-surface-energy.htm
[110]http://www.surface-tension.de/
[111]http://www.engineeringtoolbox.com/surface-tension-d_962.html
[112]R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988.
[113]A.B.D. Cassie, S. Baxter, Tarns. Faraday Soc. 40 (1944) 546.
[114]H.F. Hoefnagels, D. Wu, G. de With, W. Ming, Langmuir 23 (2007) 13158.
[115]Z. Wang, N. Koratkar, L. Ci, P.M. Ajayan, Appl. Phys. Lett. 90 (2007) 143117.
[116]C. Lijie, M.M. Shaijumon, L. Xuesong, V. Robert, M.A. Pulickel, Adv. Mater., 19 (2007) 3300.
[117]Y. Li, X.J. Huang, S.H. Heo, C.C. Li, Y.K. Choi, W.P. Cai, S.O. Cho, Langmuir 23 (2007) 2169.
[118]A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Science 318 (2007) 1618.
[119]W. Wu, X. Wang, D. Wang, M. Chen, F. Zhou, W. Liu, Q. Xue, Chem. Commun. (2009) 1043.
[120]X. Liu, W. Wu, X. Wang, Z.Z. Luo, Y. Liang, Zhou F., Soft Matter. 5 (2009) 3097.
[121]T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 12 (1996) 2125.
[122]T. Białopiotrowicz, B. Jańczuk, Appl. Surf. Sci. 201 (2002) 146.
[123]S. Shibuichi, T. Onda, N.Satoh, K. Tsujii, J. Phys. Chem. 100 (1996) 19512.
[124]S. Shibuichi, T. Onda, N.Satoh, K. Tsujii, J. Jpn. Oil Chem. Soc. 12 (1996) 2125.
[125]C.T. Hsieh, J.M. Chen, J. Colloid Interface Sci. 255 (2002) 248.
[126]C.T. Hsieh, H. Teng, J. Colloid Interface Sci. 230 (2000) 171.
[127]http://angstfreistudieren.at/mhcwaj.php?q=cohesive-forces
[128]B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999.
[129]http://www.britannica.com/EBchecked/media/928/Double-layer-structure-and-change-of-potential-with-distance-from
[130]M.W. Xu, S.J. Bao, H.L. Li, J Solid State Electrochem 11 (2007) 372.
[131]Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li J Solid State Electrochem 8 (2004) 482.
[132]Y.G. Wang, X.G. Zhang, Electrochim Acta 49 (2004)1957.
[133]S. Shiraishi, H. Kurihara, L. Shi, T. Nakayama, A. Oya, J Electrochem Soc 149 (2002) A855.
[134]https://decibel.ni.com/content/blogs/mikeshaw/2009/04/30/chronoamperometry-vis
[135]http://www.cartage.org.lb/en/themes/sciences/Chemistry/Electrochemis/Electrochemical/CyclicVoltammetry/CyclicVoltammetry.htm
[136]http://www.ceb.cam.ac.uk/pages/linear-sweep-and-cyclic-voltametry-the-principles.html
[137]O.E. Rogach, A. Kornowski, A.M. Kapitonov, N.V. Gaponenko, S.V. Gaponenko, A. Eychmüller, et al, Mater. Sci. Eng. B 64 (1999) 64.
[138]Y.C. Xing, J Phys Chem B 108 (2004) 19255.
[139]N. Steven, S. Tedeschi, K. Power, B. Moudgil, H. El-Shall, Powder Technol. 191(2009) 170.
[140]A.V. Rao, M.M. Kulkarni, D.P. Amalnerkar, T. Seth, J. Non-Cryst. Solids 330 (2003) 187.
[141]A. Fidalgo, L.M. Ilharco, J. Non-Cryst. Solids 283 (2001) 144.
[142]E. Vinogradova, M. Estrada, A. Moreno, J. Colloid Interface Sci. 298 (2006) 209.
[143]S. Štandeker, Z. Novak, Z. Knez, J. Colloid Interface Sci. 310 (2007) 362.
[144]J. Estella, J.C. Echeverría, M. Laguna, J.J.J. Garrido, Non-Cryst. Solids 353 (2007) 286.
[145]A. Maity, S.S. Ray, M.J. Hato, Polymer 49 (2008) 2857.
[146]S. Hussain, A.K. Pal, Mater. Lett. 62 (2008) 1874.
[147]Y. Xu, X. Wang, R. Tian, S. Li, L. Wan, M. Li, et al, Appl. Surf. Sci. 254 (2008) 2431.
[148]M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, et al, Adv. Mater. 17 (2005) 1977.
[149]J.Y. Shiu, C.W. Kuo, P. Chen, C.Y. Mou, Chem. Mater. 16 (2004) 561.
[150]Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Langmuir 22 (2006) 9676.
[151]Z. Yuan, H. Chen, J. Tang, X. Chen, D. Zhao, Z. Wang, Surf. Coatings Technol. 201 (2007) 7138.
[152]D. Öner, T.J. McCarthy, Langmuir 16 (2000) 7777.
[153]T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources 60 (1996) 249.
[154]R.L. McCreery, K.K. Cline, C.A. McDermott, M.T. McDermott, Colloids Surf. A 93 (1994) 211.
[155]Y.T. Lee, N.S. Kim, J. Park, J.B. Han, Y.S. Choi, H. Ryu, et al. Chem Phys Lett 372 (2003) 853.
[156]K.E. Kim, K.J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, et al. Chem Phys Lett 401 (2005) 459.
[157]L. Ni, K. Kuroda, L.P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, et al. Carbon 44 (2006) 2265.
[158]C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.F. Muilenberg, Handbook of X-ray photoelectron spectroscopy. Minnesota: Perkin-Elmer Co; 1979.
[159]C. Médard, M. Morin, J Electroanal Chem 632 (2009) 120.
[160]J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, Compos Part A-Appl S 38 (2007) 1331.
[161]W.H. Lee, J.Y. Kim, Y.K. Ko, P.J. Reucroft, J.W. Zondlo, Appl Surf Sci 141 (1999) 107.
[162]W.H. Lee, P.J. Reucroft, Carbon 37 (1999) 7.
[163]T. Takahagi, A. Ishitani, Carbon 22 (1984) 43.
[164]X. Chen, J. Wang, M. Lin, W. Zhong, T. Feng, J. Chen, et al., Mater Sci Eng: A 492 (2008) 236.
[165]Y.L. Yao, Y. Ding, L.S. Ye, X.H. Xia, Carbon 44 (2006) 61.
[166]E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, J. Phys. Chem. B 106 (2002) 60.
[167]J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. Acta 52 (2007) 2649.
[168]M. Corrias, B. Caussat, A. Ayral, J. Durand, Y. Kihn, Ph. Kalck, Ph. Serp, Chem. Eng. Sci. 58 (2003) 4475.
[169]C.T. Hsieh, J.Y. Lin, Powder Technology 192 (2009) 16.
[170]S. Koh, J. Leisch, M. F. Toney, P. Strasser, J. Phys. Chem. C 111 (2007) 3744.
[171]M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions. Oxford: Pergamon Press (1966).
[172]C.T. Hsieh, Y.W. Chou, J.Y. Lin, Int. J. Hydrogen Energy 32 (2007) 3457.
[173]Y. Shao, G. Yin, Y. Gao, P. Shi, J. Electrochem. Soc. 153 (2006) A1093.
[174]S. Takenaka, H. Matsumori, H. Matsune, H. Matsune, E. Tanabe, M. J. Kishida, Electrochem. Soc. 155 (2008) B929.
[175]M. Watanabe, S. Motoo, J Electroanal Chem 602 (1975) 67.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊