|
Aichelin, U., & Dowsland, K. A. (2000). Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. Journal of Scheduling, vol. 3, pp. 139-153. Aichelin, U., & Dowsland, K. A. (2003). An indirect genetic algorithm for a nurse scheduling problem. Computers & Operations Research, vol. 31, pp. 761-778. Aprio, J., Better, M., Glover, F., Kelly J., & Laguna, M. (2006). Enhancing business process management with simulation optimization. Proceedings of the 38th conference on Winter simulation, pp. 642-649. Azaiez, M. N., & Al Sharif, S. S. (2005). A 0-1 goal programming model for nurse scheduling. Computers & Operations Research, vol. 32, pp. 491-507. Bard, J. F., & Purnomo, H. W. (2005). Preference scheduling for nurses using column generation. European Journal of Operational Research, vol. 164, pp. 510-534. Bard, J. F., Binici, C., & deSilva, A. H. (2003). Staff scheduling at the United States Postal Service. Computers & Operations Research, vol. 30, pp. 745-771. Beaumont, N. (1997). Case Study : Scheduling staff using mixed integer programming. European Journal of Operational Research, vol. 98, pp. 473-484. Berrada, I., Ferland, J. A., & Michelon, P. (1996). A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Economic Planning Sciences, vol. 30, issue 3, pp. 183-193. Blochliger, I. (2004). Modeling staff scheduling problems. A tutorial. European Journal of Operational Research, vol. 158, pp. 533-542. Branke, J., & Mostaghim, S. (2006, September). About selecting the personal best in multi-objective particle swarm optimization. Proceedings of the 9th International Conference on Parallel Problem Solving from Nature – PPSN IX, Reykjavik, Iceland, pp. 523-532. Brusco, M. J., & Jacobs, L. W. (1995). Cost analysis of alternative formulations for personnel scheduling in continuously operating organizations. European Journal of Operational Research, vol. 86, pp. 249-261. Brusco, M. J., & Johns, T. R. (1996). A sequential integer programming method for discontinuous labor tour scheduling. European Journal of Operational Research, vol. 95, pp. 537-548. Burke, E. K., Curtois, T., & Post, G. (2008). A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European Journal of Operational Research, vol. 188, pp. 330-341. Cai, X., & Li, K. N. (2000). A genetic algorithm for scheduling staff of mixed skills under multi-criteria. European Journal of Operational Research, vol. 125, pp. 359-369. Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems – a bibliographic survey. European Journal of Operational Research, vol. 151, pp. 447-460. Clerc, M., & Kennedy, J. (2002). The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation, vol. 6, pp. 58-73. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transaction on Evolutionary Computation, vol. 8, No. 3, pp. 256-279. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, vol. 6, No. 2, pp. 42-50. Dowsland, K. A. (1998). Nurse scheduling with tabu search and strategic oscillation. European Journal of Operational Research, vol. 106, pp. 393-407. Easton, F. F., & Mansour, N. (1999). A distributed genetic algorithm for deterministic and stochastic labor scheduling problems. European Journal of Operational Research, vol. 118, pp. 505-523. Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering A review of applications, methods and models. European Journal of Operational Research, vol. 153, pp. 3-27. Glover, F. (1989). Tabu search – Part I. ORSA Journal on Computing, vol.1, No.3, pp. 190-206. Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA., pp. 1677-1681. Hu, X., Eberhart, R., & Shi, Y. (2003). Particle swarm with extended memory for multiobjective optimization. Proceedings of the IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana, USA., pp. 193-197. Jan, A., Yamamoto, M., & Ohuchi, A. (2000). Evolutionary algorithms for nurse scheduling problem. Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 196-203. Kennedy, J., & Eberhurt, R. (1995). Particle Swarm Optimization. Proceedings of IEEE Conference on Neural Networks, pp. 1942-1948. Laguna, M., & Marti, R. (2003). Scatter Search: Methodology and Implementation in C. Kluwer Academic Publishers, London. Li, X. (2003). A nondominated sorting particle swarm optimizer for multiobjective optimization. Proceedings of Genetic and Evolutionary Computation, In Springer-Verlag Lecture Notes in Computer Science, vol. 2723, pp. 37-48. Moore, J., & Chapman, R. (1999). Application of particle swarm to multiobjective optimization. Department of Computer Science and Software Engineering, Auburn University. Mostaghim, S., & Teich, J. (2003). Strategies for finding local guides in multi-objective particle swarm optimization (MOPSO). Proceedings of the IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana, USA., pp. 26-33. Moz, M., & Pato, M. V. (2007). A genetic algorithm approach to a nurse rerostering problem. Computers & Operations Research, vol. 34, pp. 667-691. Seckiner, S. U., Gokcen, H., & Kurt, M. (2007). An integer programming model for hierarchical workforce scheduling problem. European Journal of Operational Research, vol. 183, pp. 694-699. Srinivas, N., & Deb, K. (1994). Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, vol. 28, No. 3, pp. 221-248. Tanomaru, J. (1995). Staff scheduling by a genetic algorithm with heuristic operators. Proceedings of the IEEE International Conference on Evolutionary Computation, vol. 1, pp. 456-461. Tsang, E., & Voudouris, C. (1997). Fast local search and guided local search and their application to British Telecom’s workforce scheduling problem. Operations Research Letters, vol. 20, pp.119-127. Van Veldhuizen, D. A. (1999, June). Multiobjective evolutionary algorithms classifications, analyses, and new innovations. PhD thesis, Graduate School of Engineering of the Air Force Institute of Technology, Air University. Yin, P. Y., Glover, F., Laguna, M., & Zhu, J. X. (2007). Scatter PSO – A more effective form of Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, pp. 2289-2296. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and strengthen Pareto approach. IEEE Transaction on Evolutionary Computation, vol. 3, No. 4, pp. 257-271. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multi-objective evolutionary algorithms: Empirical results. MIT Evolutionary Computation, vol. 8, No. 2, pp. 173-195.
|