跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡朝治
研究生(外文):Chou-Jiu Tsai
論文名稱:一種雙曲線方程式解法之加權新概念及其在管道流場上的應用
論文名稱(外文):A new concept of weighting on schemes for hyperbolic equation with application to channel flows
指導教授:梁勝明
指導教授(外文):Shen-Min Liang
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:英文
論文頁數:190
中文關鍵詞:非穩態穿音速流震波加權函數
外文關鍵詞:UnsteadyTransonic flowShockWeighting function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非穩態穿音速管流一直都被用以了解運轉中的引擎之穩定性問題。本文主
要目的即在於研究具各種管道擴張比之剛性或彈性管壁內非穩態穿音速流
,以利於現代航空器之設計。研究方法考慮發展一套快速、準確的 TVD
法來模擬流場,使能準確捕捉震波。本文提出一種用來分析雙曲線方程式
解法之加權新概念。這概念可在定量上了解數值法的傳波現象。首先根據
一些傳統上解線性對流方程式之數值法來介紹加權函數。先釐清各解法之
準確性與穩定性。然後推廣到非線性問題的解法,包括 Harten、Yee 的
TVD 法。最後導致本文提出一套快速、準確、穩定的 TVD 法,並以數值
測試加以驗證。  物理問題上,所探討管道擴張比與壁面彈性效應等問
題。是經由管道內震波的振動與出口壓力波的特性之關係作研究,有相當
不錯的發現。透過數值模擬,比較準一維及二維非穩態管流結果,可知二
維效應在管道擴張比變大的情況更形顯著。對各種管道擴張比的情況,建
立震波振動的振幅、相差與背壓的振幅、頻率之關係,可知在小的管道擴
張比的情況,該關係呈線性;在大的管道擴張比情況下,該關係呈非線性
。  至於彈性管壁內之管道流場的模擬,先就壁面壓力,比較 Mason的
實驗值與靜氣彈解的結果以選定壁面的勁度。由震波在彈性管壁內或在剛
性管壁內振動的結果,可知在彈性管壁內之震波振幅較小,平均位置離喉
口較遠,振動時壁面亦隨之擺動。當震波被大幅振盪的背壓推出時,壁面
連喉口處皆會擺動,造成壁上一大負載。
Unsteady transonic channel flow solutions have long been
recognized as useful in understanding the stability problems of
operating aircraft engines. The primary purpose of this thesis
is to study unsteady transonic flows in inflexible or flexible
channels with various expansion ratios. To accurately calculate
transonic flow solutions with shock waves, a fast, high-
resolution Total Variation Diminishing (TVD) scheme is
considered for flow simulations. To implement the fast TVD
scheme, the concept of a correct weighting function on initial
data for analyzing numerical schemes used for solving
hyperbolic equations is introduced. The concept can be used to
understand quantitatively the wave propagation behavior for
different schemes. The weighting functions of some basic
spatial difference schemes are presented based on the linear
convection equation. From the viewpoint of weighting on initial
data, the accuracy and stability of a scheme, either implicit
or explicit, can be made clear. This weighting concept on
initial data is further applied to nonlinear schemes. Thus, the
weighting functions of three second-order implicit TVD schemes,
including the Harten scheme, the Yee scheme, and the present
scheme, are compared, leading to the suggestion of a robust
flux limiter for the TVD scheme. To verify the present scheme,
several test problems are simulated. The present scheme is
found to be efficient and accurate. In this study, quasi-one-
dimensional and two-dimensional transonic channel flow problems
are simulated to assess the effect of channel expansion ratio
using Euler equations model. From the numerical data obtained,
the characteristics of flow unsteadiness, such as phase lag,
amplitude, and average position of shock oscillation, that are
related to flow disturbances, such as frequency and amplitude
of back pressure, are investigated. The range of channel
expansion ratio is enlarged in the present work rather than
limited to a small value as in the assumption of
CONTENTS
中文摘要
ABSTRACT
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
1 INTRODUCTION
1.1 Motivation
1.2 Literature Survey
1.3 Outline of Thesis
2 PHYSICAL PROBLEM
2.1 Rigid-Wall Nozzles
2.2 A Flexible-Wall Nozzle
3 MATHEMATICAL FORMULATION
3.1 Compressible Navier-Stokes Equations in Cartesian Coordinates
3.2 Integral Form
3.3 Compressible Navier-Stokes Equations in Curvilinear Coordinates
3.4 Thin-Layer Approximation
3.5 Euler Equations in Quasi-one-dimensional Form
3.6 the Aeroelastic Equations of Wall Motion
4 THEORY OF CORRECT WEIGHTING FOR HYPERBOLIC EQUATIONS
4.1 Introductory Remark
4.2 Concept of Correct weights on Initial Data
4.3 Extension of Weighting Concept to Hyperbolic System
5 NUMERICAL PROCEDURES
5.1 Grid Generation
5.2 Numerical Formulation
5.3 Boundary Conditions
5.4 Initial Guess
5.5 Choice of Time Step
6 RESULTS AND DISCUSSIONS
6.1 Validation of the Present Scheme
6.2 Transonic Flow in a Rigid-Wall Channel
6.3 Transonic flow in a Flexible-Wall Channel
7 CONCLUSIONS
APPENDICES
REFERENCES
TABLES
FIGURES
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top