跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳金龍
研究生(外文):Chin-Lung Chen
論文名稱:具有移動蓋板圓弧凹槽內週期流場及對流熱傳之研究
論文名稱(外文):Study of Periodic Flow Pattern and Convection Heat Transfer in a Lid-Driven Arc-Shape Cavity
指導教授:鄭金祥
指導教授(外文):Chin-hsiang Cheng
學位類別:博士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:136
中文關鍵詞:圓弧凹槽週期流場對流熱傳
外文關鍵詞:Arc-Shape CavityConvection Heat TransferPeriodic Flow Pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文研究旨在探討具有移動蓋板圓弧凹槽內的浮力效應對週期暫態流場及熱傳對流特性綜合影響進行研究數值分析。 在數值方法方面,研究採用流線函數-渦漩量法(stream function-vorticity)、貼壁座標轉換(body-fitted coordination transfer) 及有限體積法(finite-volume method)來求解統制方程式,而得流場及溫度場數據。在實驗方面,以熱電偶(thermocouples)測量穩態溫度值且用煙線法來方便觀察流場流動之情行。
本研究探討內容包括:
(1) 水平及傾斜凹槽之自然對流熱傳特性及流動型態
(2) 具移動蓋板凹槽之穩態對流熱傳特性及流動型態
(3) 具等速移動或振動蓋板之圓弧或不同形狀凹槽之暫態(週期性)混合對流及流動型態
主要針對慣性力及浮力流場的綜合影響進行研究。結果顯示當慣性力及浮力的強度相近時,流場會出現暫態式的週期振盪現象。當慣性力及浮力其中之一獨大時,該週期振盪現象則無所見。在寬廣關係參數中,針對流場形態、摩擦因子及紐塞數(Nusselt number)進行研究,分別比較實驗解與數值解之流場形態之一致性及數值解的可靠性。研究發現圓弧凹槽內可能發生兩種週期流場型態現象,分別為橫貫型(traversing-periodic pattern)及半區間型(half-periodic pattern)週期流場型態,本研究同時探討此二不同型態的週期流場特性、局部及平均紐塞數分佈。深入研究圓弧凹槽的置放角度(inclination angle)及移動蓋板振動對凹槽內週期流場的影響。此外,亦針對九種不同的截面形狀凹槽進行分析,研究具不同截面形狀凹槽的週期流場特性。
ABSTRACT
Experimental and numerical study has been performed to investigate the combined effects of lid movement and buoyancy on flow pattern and heat transfer characteristics for the mixed convective flow inside an arc-shape cavity. The governing equations in terms of the stream function-vorticity formulation are solved by the finite-volume method coupled with a body-fitted coordinate transformation scheme. In experiments, steady-state temperature data are measured by K-type thermocouples, and the flow field is visualized by using kerosene smoke.
The task of the present study includes the numerical and experimental investigation of
(1) Natural convection heat transfer and flow pattern in the horizontal and the inclined cavities.
(2) Steady mixed convection heat transfer and flow pattern in the horizontal cavities with a moving lid.
(3) Unsteady (periodic) mixed convection heat transfer and flow pattern in the horizontal and the inclined cavities, particularly under the effects of irregular shape and lid oscillation.
Results show that only when the inertial and buoyant forces are of approximately equal strength the periodic flow pattern can be observed. For an inertia-dominant or buoyancy-dominant situation, the periodic flow pattern is not visible. Flow pattern, friction factor, and Nusselt numbers are investigated in wide ranges of parameters. Close agreement in the comparison between the predicted and the visualized flow patterns has been found. In these above ranges of the parameters, two kinds of oscillatory flow pattern have been observed, namely, the traversing-periodic and the half-periodic patterns. Attention has been focused on the effects of the inclination effects on the occurrence of these two different oscillatory flow patterns. Meanwhile, periodic variation in the mixed convection heat transfer accompanying the oscillatory moving lid has also been studied, and the results for the local and the overall Nusselt numbers are presented. This report is also concerned with transient behavior of a buoyancy-induced periodic flow in different lid-driven cavities with different cross-sectional shapes. Periodic flow patterns and heat transfer characteristics for various geometries are predicted.
TABLES OF CONTENTS

CHINESE ABSTRACT……….……………….……………………….…………….i
ENGLISH ABSTRACT…….……………................…………..………….iii
ACKNOWLEDGEMENTS…..…………………......…………………………………v
TABLE OF CONTENTS….………………………....…….…………..………….vi
LIST OF TABLES…………………........….....……………..……..…… viii
LIST OF FIGURES………….…………………....……………….………….…ix
NOMENCLATURE….…………………….……....………………….…………….xv
CHAPTER
I Introduction…..................................……….…….1
1.1 Literature Review...…………….....…………….……1
1.2 Scope of the Present Study....………..…....….….5
II Natural Convection….................…….……..……….…….8
2.1 Theoretical Analysis…………………………….….…...8
2.2 Numerical Methods…………....………….………….…..11
2.3 Effects of Grashof Number.………..…………….….….12
2.4 Experimental System…….….………….………….….….13
2.5 Effects of the inclination angle.……… …….……..16
III Steady Mixed convection…………………....................….31
3.1 Theoretical Analysis……………………………….…..…31
3.2 Numerical Methods..…………...……………….….….…35
3.3 Experimental System...………….……..……………..…35
3.4 Effects of Grashof Number and Reynolds Number...….37
IV Unsteady Mixed Convection….……………………..….….…..……53
4.1 Theoretical Analysis……………….……….….…..…..54
4.2 Numerical Methods…………………..……….….…..…..56
4.3 Experimental System…….….…………..…………….….57
4.4 Effects of Grashof Number and Reynolds Number..……59
4.5 Effects of Inclination ……………………………..……64
4.6 Effects of Irregular Cavities……..………….....….70
4.7 Effects of Oscillatory Wall………………..….……….72
V Concluding Remarks……………….…………………..….……...….123
REFERENCES…………………………….…………………………..…...….….129
APPENDIX: Comparison between the present code and commercial software CFD-RC................................................................134
REFERENCES

1. P. Payver, Y.N. Lee and W.J. Minkowycz, Simulation of Heat Transfer to Flow in Radial Grooves of Friction Pairs, Int. J. Heat Mass Transfer, vol. 37, pp.313-319,1994.
2.P. Payver, Laminar Heat Transfer in the Oil Groove of a Wet Clutch, Int. J. Heat Mass Transfer, vol. 34, pp.1791-1798, 1991.
3.E.J. Berger, F. Sadeghi, and C.M. Krousgrill, Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches, Journal of Tribology, vol. 118, pp.137-146, 1996.
4. E.J. Berger, F. Sadeghi, and C. M. Krousgrill, Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches, Journal of Tribology, vol. 119, pp.143-148, 1997.
5. S. Natsumeda and T. Miyoshi, Numerical Simulation of Engagement of Paper Based on Wet Clutch Facing, Journal of Tribology, vol. 116, pp.232-237, 1994.
6. F.P. Incropera, Convection Heat Transfer in Electronic Equipment Cooling, ASME J. Heat Transfer, vol. 110, pp.1097-1111, 1988.
7. A. Bejan, and G. A. Ledezma, Thermodynamic Optimization of Cooling Techniques for Electronic Package, Int. J. Heat Mass Transfer, vol. 39, pp.1213-1221,1996.
8. W.M. Kays, and A.L. London, Compact Heat Exchanger, 3rd ed, McGraw-Hill, NewYork, 1984.
9. F. Gamma, E. Sciubba, D.Zingaro, and G. E. Farello, Fluid Dynamic Behavior of Heat Exchangers with Active Cavities: a Numerical Study, Numerical Heat Transfer, Part A, vol. 42, pp.385-400, 2002.
10.A. F. Kothdiwala, B. Norton, and P.C. Eames, The Effect of Variation of Angle of Inclination on the Performance of Low-Concentration-Ratio Compound Parabolic Concentration Solar Collections, Solar Energy, vol. 55, pp.301-309, 1995.
11. S. Alizadeh, and W.Y. Saman, An Experimental Study of a Forced Flow Solar Collector/Regenerator Using Liquid Desiccant, Solar Energy, vol. 73, pp.345-362, 2002.
12. H.M. Yeh, C.D. Ho, and C.Y. Lin, The Influence of Collector Aspect Ratio on the Collector Efficiency of Baffled Air Heaters, Energy, vol. 23, pp.11-16,1995.
13. T.W. Park, S.K. Aggarwal, and V.R. Katta, A Numerical Study of Droplet-Vortex Interactions in an Evaporating Spray, Int. J. Heat and Mass Transfer, vol. 39, pp.2205-2217, 1996.
14. H. Zhang, X.Y. Huang, H.S. Li, and L.P. Chua, Flow Pattern and Heat Transfer Enhancement in Low-Reynolds-Rayleigh-Number Channel, Applied Thermal Engineering, vol. 22, pp.1277-1288, 2002.
15. G. Fabbri, Heat Transfer Optimization in Corrugated Wall Channels, Int. J. Heat Mass Transfer, vol. 43, pp.4299-4310, 2000.
16. T.H. Hsu, and P.T. Hsu, Thermal Convection of Micropolar Fluids in a Lid-Driven Cavity, Int. Comm. in Heat and Mass Transfer, vol. 22, pp.189-200, 1995.
17. A.K. Prasad, and J.F. Koseff, Combined Forced and Natural Convection Heat Transfer in a Deep Lid-Driven Cavity Flow, Int. J. of Heat and Fluid Flow, vol.17, pp.460-467,1996.
18. U. Ghia, K.N. Ghia, and C.T. Shin, High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method, Journal of Computation Physic, vol. 48, pp.387-411,1982.
19. P.D. Anderson, O.S. Galaktionov, G.W.M. Peters, F.N. Van De Vosse, and H.E.H. Meijer, Chaotic Fluid Mixing in Non-Quasi-Static Time-Periodic Cavity Flows, Int. J. of Heat and Fluid Flow, vol. 21, pp.176-185, 2000.
20. Y.F. Peng, Y.H. Shiau, and R.R. Hwang, Transition in a 2-D Lid-Driven Cavity Flow, Computers and Fluids, vol.32, pp.337-352, 2003.
21. A.K. Prasad and J.R. Koseff, Combined Forced and Natural Convection Heat Transfer in a Deep Lid-Driven Cavity Flow, Int. J. of Heat and Fluid Flow, vol. 17, pp.460-467,1996.
22.C.C. Huang and T.F. Lin, Vortex Flow and Thermal Characteristics in Mixed Convection of Air in a Horizontal Rectangular Duct: Effects of the Reynolds and Grashof Numbers, Int. J. Heat Mass Transfer, vol 38, pp.1661-1674,1995.
23. C.C. Jahnke, V. Subramanyan and D.T. Valentine, On the Convection in an Enclosed Container with Unstable Side Wall Temperature Distribution, Int. J. Heat Mass Transfer, vol. 41, pp.2307-2320,1998.
24. H.J. Sung, and Y.J. Jung, and H. Ozoe, Prediction of Transient Oscillation Flow in Czochralski Convection, Int. J. Heat Mass Transfer, vol. 38, pp.1627-1636,1995.
25. P. Wang and R. Kahawita, Oscillatory Behaviour in Buoyant Thermocapillary Convection of Fluid Layers with a Free Surface, Int. J. Heat Mass Transfer, vol. 41, pp.399-409,1998.
26. C.C. Huang and T.F. Lin, Numerical Simulation of Transitional Aiding Mixed Convective Air Flow in a Bottom Heated Inclined Rectangular Duct, Int. J. Heat Mass Transfer, vol. 8, pp.1697-1710, 1996.
27. T.D. Upton and D.W. Watt, Experimental Study of Transient Natural Convection in an Inclined Rectangular Enclosure, Int. J. Heat Mass Transfer, vol.11, pp.2679-2690,1997.
28. A. Barletta and E. Zanchini, Time-Periodic Mixed Convection in an Inclined Channel, Int. J. Heat Mass Transfer, vol. 46, pp.551-563, 2003.
29. T. Nishimura, N. Oka, Y. Yoshinaka and K. Kunitsugu, Influence of Imposed Oscillatory Frequency on Mass Transfer enhancement of Groove Channels for Pulsatile Flow, Int. J. Heat Mass Transfer, vol. 43, pp.2365-2374, 2000.
30. K.H. Kim, J.M. Hyum and H.S. Kwak, Buoyancy Convection in a Side-Heated Cavity under Gravity and Oscillation, Int. J. Heat Mass Transfer, vol. 44, pp.857-861, 2001.
31. H.S. Kwak, K. Kuwahara and J.M. Hyun, B Resonant Enhancement of Natural Convection Heat Transfer in a Square Enclosure, Int. J. Heat Mass Transfer, vol. 41, pp.2837-2846, 1998.
32. K.H. Chung , H.S. Kwak and J.M. Hyun, Finite-Wall Effect on Buoyant Convection in an Enclosure with Pulsating Exterior Surface Temperature, Int. J. Heat Mass Transfer, vol. 44, pp.721-732, 2001.
33. S. Biringen and G. Danabasoglu, Oscillatory Flow with Heat Transfer in a Square Cavity, Phys. Fluids A, vol. 1, pp.1796-1812, 1989.
34. T. Nishimura and K. Kunitsugu, Fluid Mixing and Mass Transfer in Two-Dimensional Cavities with Time-Periodic Lid Velocity, Int. J. of Heat and Fluid Flow, vol.18, pp.497-506, 1997.
35. M.H. Chang and J.H. Yu, Conjugate Heat Transfer in an Inclined Slab with an Array of Horizontal Circular Channels, Numerical Heat Transfer, Part A vol. 35, pp.779-796, 1999.
36.C.H. Cheng, H.N. Chen, and W. Aung, Experimental Study of the Effect of Transverse
Oscillation on Convection Heat Transfer from a Circular Cylinder, J. Heat Transfer, vol. 119, pp.474-482,1997.
37.C.Y. LAM, Applied Numerical Methods for Partial Differential Equations, chap. 4, Prentice Hall, New York, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文