跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/06 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳君涵
研究生(外文):Chun-Han Chen
論文名稱:以染劑吸附法及ㄧ次微分紫外光光譜法測定幾丁質類產品之純度及乙醯化程度
論文名稱(外文):A study on determination of the purity and degree of acetylation of chitinous products based on dye-binding and UV first derivative method.
指導教授: 洪良邦
指導教授(外文):Hung,Lang-Bang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:純度乙醯化程度幾丁質ㄧ次微分紫外光光譜法染劑吸附
外文關鍵詞:puritydegree of acetylationchitinous productsdye-bindingUV first derivative
相關次數:
  • 被引用被引用:6
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
目前幾丁質的應用層面相當廣泛,但有鑒於研究者利用幾丁質(chitin)及幾丁聚醣(chitosan)之前,必需先了解原料之特性,包括:乙醯化程度(degree of N-acetylation)及純度,且目前測定乙醯化程度之測定方法雖然繁多,但仍各有缺點。因此本實驗乃就以一次微分紫外光光譜法測定乙醯化程度之應用性提升及設計一套利用染料與幾丁質之吸附計算純度之方法,並建立利用13C-NMR測定幾丁質純度之新方法進行探討。

以一次微分紫外光光譜法測定乙醯化程度,除使用藥品配製簡單、省時之優點外,使用一般實驗室常見之分光光度計測定,因此其普及化程度可大大提升,而其缺點在於醋酸無法溶解乙醯化程度較高之樣品,因此本研究將比較其應用於測定酸酐法回接之較高乙醯化程度之水溶性幾丁聚醣乙醯化程度之準確性,經比較改良式高效能液相層析法與傅立葉紅外光光譜法,結果顯示具良好之相似性。

幾丁質類樣品之純度即幾丁質類樣品中所含幾丁質及幾丁聚醣之總重量佔樣品重量之百分比。將幾丁聚醣溶解於0.5 M HCl glycine buffer,利用幾丁聚醣上所帶胺基與染劑Cibacron brilliant red 3B-A上之SO3¯吸附,經過濾後以分光光度計測定未吸附之染劑含量。計算被吸附之染劑含量、幾丁聚醣上胺基之含量,再配合傅立葉紅外光光譜法測定樣品之乙醯化程度,即可求得樣品之純度。比較染劑吸附法及扣除法所得之純度,其結果並無顯著差異。

另一方面,利用13C-NMR法亦可測定幾丁質類產品之純度,然此法僅可使用於殘留蛋白質含量低於2% 之樣品。
Abstract

The applications of chitin are quite extensive nowdays. Researchers need to know the purity and the degree of acetylation of the raw materials before utilizing them. There are many methods to determine the degree of acetylation of chitn and chitosan at present, but none of them are flawless. The objectives of this study are to seek the possibile application of the first derivative UV spectroscopy on determining the degree of acetylation, to design a dye-binding method for purity determination, and to establish a new method by using 13C-NMR spectroscopy for purity determination.

Besides the advantages of saving time and simplifying chemical preparation, the UV first derivative method uses the UV spectrophotometer which can be found in most laboratories. Therefore, its popularization can be improved greatly. The shortcoming of the method lies in the fact that chitin with higher degrees of acetylation can not be dissolved in acetic acid. The method is found useful to determine the degree of acetylation of water-soluble chitinous products which are made by acetylation with acetic anhydride. The degrees of acetylaion obtained by using the UV first derivative method are close to those obtained by the improved HPLC method and the FTIR method.

The purity of chitin is defined as the ratio of the total weight of chitin and chitosan in the chitinous sample to the weight of the whole sample. When chitosan dissolved in 0.5 M HCl-glycine buffer, the amine group on chitosan chain can bind with SO3¯ of dye Cibacron brilliant red 3B-A. The amount of non-bounded dye can be determined by spectrophotometer after filtration. The purity of the sample is then calculated from the amount of the bounded dye, the glucosamine content in the chitosan chain, and the degree of acetylation which is determined by the IR method. Compare the results obtained from the dye-binding method with that from the deduction method, no significant difference was found.

Another purity-determination method is also established by the use of 13C-NMR spectroscopy. However, the method is useful only when the protein residue in the sample is below 2%.
目錄
摘要…………………………………………………………………………....I
Abstract………………………………………………………………………III目錄……………………………………………………………………….......V
圖目錄……………………………………………………………………….IX
表目錄……………………………………………………………………….XI
第一章 前言………………………………………………………………...1
第二章 文獻整理………………………………………………………….3
一、幾丁質與幾丁聚醣之來源與結構………………………………..3
(一) 幾丁質與幾丁聚醣之來源……………………………….3
(二) 幾丁質與幾丁聚醣之結構……………………………….4
(三) 幾丁質與幾丁聚醣之製備……………………………….4
二、幾丁質類產品之應用…………………………………………….6
(一) 化工方面…………...……………………………………..6
(二) 生醫方面……………………………………………….....6
(三) 食品方面……………………………………………...…..7
1. 保健功能…………………………………………………..7
2. 可食性膜…………………………………………………..8
3. 抗菌能力…………………………………………………..8
4. 食品添加物………………………………………………..9
5. 膳食纖維…………………………………………………..9
(四) 廢水處理方面…………………………………………….9
三、幾丁聚醣與染劑之吸附作用……………………………………11
(一) 廢水中染劑之脫除方法…………………………………11
1. 化學方法…………………………………………………11
2. 物理方法…………………………………………………11
3. 生化方法…………………………………………………12
(二) 幾丁聚醣與染劑吸附效能之影響因子…………...……12
(三) 幾丁聚醣吸附染劑之反應模式……………………...…13
(四) 幾丁聚醣吸附染劑於分析上之應用……………...……15
四、幾丁質與幾丁聚醣N-乙醯化程度之測定………………..…....16
(一) 酸水解-高效能液相層析法…………………...………16
(二) 核磁共振光譜法……………………………………...…18
1. H1-NMR法………………………………………………18
2. C13-NMR法……………………………………………...19
3. N15-NMR法……………………………………………...20
(三) 紅外光光譜法………………………………………...…20
(四) 一次微分紫外光光譜法……………………………...…22
(五) 膠體滴定法…………………………………………...…22
(六) 電位滴定法…………………………………………...…23
五、幾丁質與幾丁聚醣純度之測定………………………………….24
(一) 以碳元素含量分析………………………………………24
(二) 以氮元素含量分析………………………………………25
六、結語……………………………………………………………..26
第三章 材料與方法……………………………………………………..27
一、材料……………………………………………………………..27
(一) 樣品……………………………………………………...27
(二) 標準品…………………………………………………...27
(三) 藥品………………………………………...……………27
(四) 層析管柱………………………………………………...28
(五) 透析膜…………………………………………………...28
(六) 儀器……………………………………………………...28
二、方法……………………………………………………………….30
(一) 製備不同乙醯化程度之幾丁質、幾丁聚醣………............30
(二) 酸酐乙醯化法製備不同乙醯化程度水溶性幾丁聚醣.......30
(三) 測定幾丁質、幾丁聚醣之乙醯化程度……………………30
1. 一次微分紫外光光譜法…………………………………30
2. 固態核磁共振光譜法……………………………………31
3. 改良式高效能液相層析法………………………………32
4. 紅外光光譜法…………………………………………....33
(四) 幾丁質及幾丁聚醣純度分析…………………………...33
1. 染劑吸附法………………………………………………33
2. 13C-NMR法……………………………………………...38
3. 扣除法……………………………………………………39
第四章 結果討論………………………………………………………...41
一、不同乙醯化程度幾丁質類產品之製備………………………...41
(一) 熱鹼處理法所得之不同乙醯化程度之幾丁質類產品…41
(二) 酸酐乙醯化法所得之不同乙醯化程度幾丁聚醣………41
二、測定樣品之乙醯化程度…………………………………………41
(一)固態核磁共振光譜法……….……………………………41
(二)改良式高效能液相層析法….…...……………………….42
(三) 紅外光光譜法……….…………………………………...42
(四)一次微分紫外光光譜法...……………………….………43
三、樣品純度之測定…………………………………………………44
(一) 染劑吸附法……………………………………………...44
(二) 扣除法…………………………………………………...49
(三) C13-NMR法…………………………………….............49
第五章 結論……………………………………………………………...51
圖…………………………………………………………………………...52
表………………………………………………………………………...…90
參考文獻…………………………………………………………………...95
附錄A:Eqn. 20 之推導…………………………………………………107






















圖目錄
圖一、纖維素、幾丁質及幾丁聚醣之構造………………………………..52
圖二、樣品A之13C-核磁共振光譜圖……………………………………..53
圖三、樣品B之13C-核磁共振光譜圖……………………………………..54
圖四、樣品C之13C-核磁共振光譜圖……………………………………..55
圖五、樣品D之13C-核磁共振光譜圖……………………………………..56
圖六、樣品E之13C-核磁共振光譜圖…………………………………......57
圖七、樣品F之13C-核磁共振光譜圖……………………………………..58
圖八、樣品G之13C-核磁共振光譜圖………………………………….....59
圖九、樣品H之13C-核磁共振光譜圖……………………………………..60
圖十、幾丁聚醣樣品之CP-MAS 13C-NMR光譜圖……………………....61
圖十一、樣品C之改良式高效能液相層析圖………………………….....62
圖十二、樣品W1之改良式高效能液相層析圖………………………......63
圖十三、樣品W2之改良式高效能液相層析圖………………………......64
圖十四、樣品W3之改良式高效能液相層析圖………………………......65
圖十五、樣品W4之改良式高效能液相層析圖……………………….......66
圖十六、樣品W5之改良式高效能液相層析圖…………………………..67
圖十七、幾丁質類產品之傅立葉紅外線轉換光譜圖I…………………….68
圖十八、幾丁質類產品之傅立葉紅外線轉換光譜圖II………………......69
圖十九、不同濃度N-acetyl glucosamine溶液一次微分紫外光光譜圖….70
圖二十、N-acetyl glucosamine溶液vs. H value之標準曲線…………......71
圖二十一、染劑Cibacron Brilliant Red 3B-A吸光値之標準曲線………..72
圖二十二、染劑Cibacron Brilliant Red 3B-A之結構……………………..73
圖二十三、不同pH對幾丁聚醣與染劑Cibacron Brilliant Red 3B-A
作用吸光値之影響………………………………………….74
圖二十四、不同作用時間下幾丁質吸附染劑之含量……………………..75
圖二十五、幾丁質顆粒大小對染劑吸附量之影響……………………..…76
圖二十六、作用溫度對幾丁聚醣吸附染劑含量之影響…………………..77
圖二十七、幾丁聚醣染劑吸附Cibacron Brilliant Red 3B-A以
Langmuir isotherm所繪製之線性方程式…………………......78
圖二十八、幾丁聚醣與染劑Cibacron Brilliant Red 3B-A之吸附………..79
圖二十九、膠原蛋白質之吸光値標準曲線………………………………...80
圖三十、純度測定所用葡萄糖胺標準品之13C-核磁共振光譜圖………81
圖三十一、純度測定之樣品A之13C-核磁共振光譜圖…………………82
圖三十二、純度測定之樣品B之13C-核磁共振光譜圖…………………83
圖三十三、純度測定之樣品C之13C-核磁共振光譜圖…………………84
圖三十四、純度測定之樣品D之13C-核磁共振光譜圖…………………85
圖三十五、純度測定之樣品E之13C-核磁共振光譜圖…………………86
圖三十六、純度測定之樣品F之13C-核磁共振光譜圖………………….87
圖三十七、純度測定之樣品G之13C-核磁共振光譜圖…………………88
圖三十八、純度測定之樣品H之13C-核磁共振光譜圖…………………89











表目錄
表一、以13C-核磁共振光譜法及紅外光光譜法測定幾丁質類樣品
之N-乙醯化程度…………………………………………………….90
表二、以改良式高效能液相層析法、一次微分紫外光光譜法及紅外
光光譜法測定幾丁質類樣品之N-乙醯化程度……………………91
表三、以扣除法及染劑吸附法測定幾丁質類樣品之純度…………...…...92
表四、幾丁質與幾丁聚醣中水分、灰分與殘留蛋白質量,並以扣除
法計算樣品純度…………………………………………………….93
表五、以13C-NMR法及扣除法測定幾丁質類樣品之純度………………94
方紹威,1990,幾丁質與幾丁聚醣在廢水處理、生化、食品和醫藥上之研究發展現況,藥物食品檢驗局調查研究年報,8:20-30。
李明遠,2000,醋酐乙醯化法製備水溶性幾丁聚醣之探討,國立台灣海洋大學食品科學研究所碩士論文p. 18-21。
林瑞洵、蔣蘇洪、張慕珊,1992,脫乙醯度測定方法,化學通報,3:39-42。
范修榕,2000,水溶性幾丁聚醣在O/W/O多重乳化乳液之應用,國立台灣海洋大學食品科學研究所碩士論文p. 29-41。
高貴珍、焦慶才、丁一磊、陳雷,2003,茜素紅螢光猝發法測定殼聚醣含量,光譜學與光譜分析,23(5): 895-898。
游士弘,1997,幾丁質與幾丁聚醣之N-乙醯化程度及純度測定方法之探討,國立台灣海洋大學食品科學研究所碩士論文。
彭仁信,2002,醋酸酐乙醯化反應之幾丁聚醣性及幾丁聚醣酵素水解產物對微生物生長之影響,國立台灣海洋大學食品科學研究所碩士論文p. 19-21。
劉曉君,2001,幾丁質類產品純度分析方法之建立,國立台灣海洋大學食品科學研究所碩士論文。
Agulló, E., Rodríguez, M. S., Ramos V., and Albertengo, L. 2003. Present and future role of chitin and chitosan in food. Macromolecules Bioscience. 3: 521-530.
Aiba, S. 1992. Studies on chitin: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. International Journal of Biological Macromolecules. 14: 225-228.
Allan, G., Crospy, G. D., Lee, J. H., Miller, M. L., and Reif, W. M. 1972. In: Proceedings of a Symposium on Man-made Polymers in Paper Making. Helsinki. Finland.
Allan, G. G., Fox, J. R., and Kong, N. 1978. A critical evaluation of potential sources of chitin and chitosan. In: Proceedings of the International Conference on Chitin/Chitosan. Eds. Muzarelli, R. A. A., and Pariser, E. R. MIT Sea Grant Program, Cambridge, Mass.
Anjos, F. S. C., Vieira, E. F. S., and Cestari A. R. 2002. Interaction of indigo carmine dye with chitosan evaluated by adsorption and thermochemical data. Journal of Colloid and Interface Science. 253: 243-246.
Annadurai, G. 2000. Design of optimum response surface experiments for adsorption of direct dye on chitosan. Bioprocess Engineering. 23: 451-455.
Ausar, S. F., Morcillo, M., Leon, A. E., Ribotta, P. D., Masih, R., Mainero, M. Vilaro, Amigone, J. L., Rubin, G., Lescano, C., Castagna, L. F., Beltramo, D. M., Diaz, G., and Bianco, I. D. 2003. Improvement of HDL- and LDL-Cholesterol Levels in diabetic subjects by feeding bread containing chitosan. Journal of Medicinal Food. 6(4): 397-399.
Baxter, A., Dillon, M., Taylor, K. D. A., and Roberts, G. A. F. 1992. Improved method for i.r. determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecule. 14: 166-169.
Capalash, N. and Sharma, P. 1992. Biodegradation of textile azo-dyes by Phanerochaete chrysosporium. World Journal of Microbiology & Biotechnology. 30(8): 309-312.
Cauchie, H. M. 1997. An attempt to estimate crusttasen chitin production hydrosphere. In: Advances in Chitin Sciences. Eds. Domard, A., Roberts, G. A. F., and Várum, K. M. Jacques Andre Publisher, Lyon. 2: 32-39.
Chen, R. H., Lin, J. H., and Yang, M. H. Relationships between the flexibilities of chitosan molecules and physical properties of their casted films. Carbohydrate Polymers. 24: 41-46.
Cira, L. A., Huerta, S., Hall, G. M., and Shirai, K. 2002. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochemistry. 37: 1359-1366.
Cripps, C., Bumpus, J. A., and Aust, S. D. 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Applied and Environmental Microbiology. 56: 1114-1118.
Desai, C. M., Vaidya, B. K., and Surat, M. T. B. C. 1955. Photo. ovrddot. oxidation of dyes in the presence of hydrogen peroxide. Journal of Indian Chemical Society. 32: 252-253.
Di Colo, G., Zambito, Y., Burgalassi, S., Serafini, A., and Saettone, M. F. 2002. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). International Journal of Pharmaceutical. 248: 115-122.
Domard, A. 1987. Determination of N-acetyl content in chitosan samples by c.d. measurements. International Journal of Biological Macromolecules. 9: 333-336.
Duarte, M. L., Ferreira, M. C., and Marvão, M. R. 2002. A statistical evaluation of IR spectroscopic of α-chitin and chitosan. Advances in Chitin Science. 4: 367-374.
Durdi, Q. and Gholamreza, A. 2000. Effects of dietary chitosan on serum lipid and lipoprotein concentrations in rats. Iranian Biomedical Journal. 4(2-3): 69-73.
Ebert, A. and Fink, H. P. 1997. Solid-state NMR spectroscopy of chitin and chitosan. In: Chitin Handbook. Eds. Muzzarelli, R. A.A. and Peter, M. G. European Chitin Society. p. 137-143.
El Ghauth, A., Arul, J., Asselin, A., and Benhamou, N. 1992. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research. 96(9): 769-779.
Freundlich, H. and Neumann, W. 1910. Adsorption of Dyes. Zeitschrift fur physikalische Chemie. 67: 538.
Gotoh, T., Matsushima, K., and Kikuchi, K. I. 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere. 55: 135-140.
Gupta, G. S., Prasad, G., and Singh, V. H. 1990. Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Research. 24: 45-50.
Hadwiger, L. A., Kendra, D. F., Frislenky, B. W., and Wagoner, W. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Chitin in Nature and Technology. Eds. Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, C. W. Plenum Press. New York. USA. p. 209-214.
Heras, A., Rodríguez, N., Ramos, V., and Agulló, E. 2000. N-Methylene phosphonic chitosan: a novel soluble derivative. Carbohydrate Polymers. 44(1): 1-8.
Heux, L., Brugnerotto, J., Desbrières, J. Versali, M.-F., and Rinaudo, M. 2000. Solid state nmr for determination of degree of acetylation of chitin and chitosan. Biomacromolecules. 1: 746-751.
Hirai, A., Odani, H., and Nakajima, A. 1991. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polymer Bulletin. 26: 87-94.
Hirano, S. 1989. Production and application of chitin and chitosan in Japan. Eds. Skjak-Bark, G., Anthosen, T., and Sandford, P. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. p. 37-42.
Hirano, S. 1999. Chitin and chitosan as novel biotechnological materials. Polymer International. 48(8): 732-734.
Hou, W. M., Miyazaki, S., Takada, M., and Komai, T. 1985. Sustained release of indomethacin from chitosan granules. Chemical & Pharmaceutical Bulletin. 33: 3986-3992
Inoue, Y. 1997. NMR determination of the degree of acetylation. In: Chitin Handbook. Eds. Muzzarelli, R. A.A. and Peter, M. G. European Chitin Society. p.133-136.
Jennings, C. D., Boleyn, K., Bridges, S. R., Wood, P. J., and Anderson, J. W. 1988. A comparison of the lipid-lowering and intestinal morphological effects of cholestyramine, chitosan, and oat gum in rats. Proceedings of the Society for Experimental Biology and Medicine. 189(1): 13-20.
Jeon, Y. J., Kamil, J. Y. V. A., and Shahidi, F. 2002. Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Agricultural and Food Chemistry. 50: 5167-5178.
Kester, J. J. and Fennema, O. R. 1986. Edible films and coatings: a review. Food Technology. 40(12): 47-59.
Kim, C. Y., Choi, H. M., and Cho, H. T. 1997. Effect of deacetylation on sorption of dyes and chromium on chitin. Journal of Applied Polymer Science. 63(6): 725-736.
Knorr, D. 1984. Used of chitious polymers in food- a challenge for good research and development. Food Technology. 1: 85-97.
Knorr, D. 1991. Recovery and utilization of chitin and chitosan in food processing and waste management. Food Technology. 45: 114-122.
Kumar, M. N. V. R., Sridhari, T. R., Bhavani, K. D., and Dutta, P. K. 1998. Trends in color removal from textile mill effluents. Colourage. 45(8): 25-28.
Kumar, M. N. V. R. 2000. A review of chitin and chitosan applications. Reactive & Functional Polymers. 46: 1-27.
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. I., and Shimoda, K. 1993. Chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. Journal of Polymer Science. 31(9): 2393-2395.
Labuza, T. P. and Breene, W. M. 1989. Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. Journal of Food Processing and Preservation. 13(1): 1-69.
Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 40: 1361-1402.
Lavertu, M., Xia, Z., Serrqei, A. N., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M. D., and Gupta, A. 2003. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical Biochemical Analysis. 32 :1149-1158.
Maekey, M. L., Bowman, M. L., and Bergamini, M. V. W. 1989. In: Chitin and Chitosan, Elsevier Applied Science, London.
Maghami, G. G. and Roberts, G. A. F. 1988. Studies on the adsorption of anionic dyes on chitosan. Makromolekulare Chemie. 189(10): 2239-2243.
Mckay, G., Blair, H. S., and Gardner, J. R. 1989. Adsorption of dyes on chitin. Journal of Applied Polymer Science. 27: 3043-3057.
Meheriuk, M. and Lau, O. L. 1988. Journal of the American Society for Horticultural Science. Effect of two polymeric coatings on fruit quality of Bartlett and d'Anjou pears. 113(2): 222-226.
Miyazaki, S., Ishii, K., and Nadai, T. 1981. The use of chitin and chitosan as drug carriers. Chemical & Pharmaceutical Bulletin. 29: 3067-3069.
Moedritzer, K. and Irani, M. 1966. The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. Journal of Organic Chemistry. 31: 1603-1607.
Moore, G. K. and Roberts, G. A. F. 1980. Determination of the degree of acetylation of chitosan. International Journal of Biological Macromolecule. 29: 309-316.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers. 5: 461-472.
Muzzarelli, R. A. A. 1997. Human enzymic activities related to the therapeutic administration of chitin derivatives. Cellular and Molecular Life Sciences. 53(2): 131-140.
Muzzarelli, R. A. A. 1998. Colorimetric determination of chitosan. Analytical Biochemistry. 260: 255-257.
Nair, K. G. R. and Madhavan, P. 1984. Chitosan for removal of mercury from water. Fishery Technology. 21(2): 109-112.
Nakajima, K., Atsumi, K., and Kifune, K. 1984. Development of absorbable sutures from chitin. In: Chitin, Chitosan and Related Enzymes. Ed. Zikakis, J. P. Harcourt Brace Janovich, New York. p. 407.
Nasser, N. and El-Geundi, M. 1991. Comparative cost of colour removal from textile effluents using natural adsorbents. Journal Chemical Technology and Biotechnology. 50: 257-264.
Nigam, P., Armour, G., Banat, I. M., Singh, D., and Marchant, R. 2000. Physical removal of textile dyes and solid state fermentation of dye –absorbed agricultural resides. Bioresource Technology. 72: 219-226.
Niola, F., Basora, N., Chornet, E., and Vidal, P. F. 1993. A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohydrate Research. 238: 1-9.
No, H. K., Cho, Y. I., and Meyers, S. P. 1996. Dye binding capacity of commercial chitin products. Journal of Agricultural and Food Chemistry. 44: 1939-1942.
Pelegrini, R., Peralta-Zamora, P., de Andrade, A. R., Reyes, J., and Durán, N. 1999. Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental. 22: 83-90.
Peniche-covas, C., Alwarez, L. W., and Arguelles-Monal, W. 1987. The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science. 46: 1147-1150.
Peralto-Zamora, P., Kunz, A., Gomez de Morales , S., Pelegrini, R., de Capos Moleiro, P., Reyes, J., and Durán, N. 1999. Degradation of reactive dyes I. A. comparative study of ozonation, enzymatic and photochemical processes. Chemosphere. 38: 835-852.
Percot, A., Viton, C., and Domard, A. 2003. Optimization of chitin extraction from shrimp shells. Biomacromolecules. 4: 12-18.
Pinelli, S. A., Toledo, G. A. R., Esquerra, B. I. R., Luviano, S. A. R., and Higuera, C. I. 1998. Methods for extracting chitin from shrimp shell waste. Archivos Latinoamericanos de Nutrition. 48(1): 58-61.
Poots, V. J. P. and Mckay, J. J. 1976. The removal of acid dye from effluent using natural absorbent – peat. Water Rrsource. 10: 1061-1066.
Poulick, M., Voss-Foucart, M. F., and Jeuniaux, C. 1986. Chitnoprotein complexes and mineralization in Mollusk skeletal structures. In: Proceedind of the Third Conference on Chitin and Chitosan. Plenum Press New York. p. 7-12.
Ratajska, M., Struszczyk, M. H., Boryniec, S., Peter, M. G., and Loth, F. 1997. The degree of deacetylation of chitosan: optimization of the IR method. Polimery. 42(9): 572-575.
Rathke, T. D., and Hodson, S. M. 1994. Review of chitin and chitosan as fibre and film formers. Journal of Macromolecular Science, Reviews in Macromolecular Chemistry and Physics. C34(3) :375-437.
Ravah-Moisseev, S. and Carroad, P. 1981. Conversion of the enzymic hydrolysis of shellfish waste chitin to single-cell protein. Biotechnology and Bioengineering. 23(5): 1067-1078.
Ravindra, R., Krovvidi, K. R., and Khan, A. A. 1998. Solubility parameter of chitin and chitosan. Carbohydrate Polymers. 36: 121-127.
Redlich, O. and Peterson, D. L. 1959. A useful adsorption isotherm. Journal of Physical Chemistry. 63: 1024-1026.
Rhoades, J. and Roller, S. 2000. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology. 66(1): 80-86.
Robinson, T., Chandran, B., and Nigam, P. 2001. Studies on the decolourisation of an artificial textile-effluent by white-rot fungi in N-rich and N-limited media. Applied and Environmental Microbiology. 57(5-6): 810-814.
Robinson, T., McMullan G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77: 247-255.
Rodríguez, M. S., Albertengo, L., and Agulló, E. 2001. Emulsification capacity of chitosan at different pH. In: Chitin and Chitosan in Life Science. Eds: Uragami, T., Kurita, K., and Fukamizo, T. Kodansha Scientific Ltd., Japan. p. 113.
Roller, S. and Covill, N. 1999. The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology. 47(1-2): 67-77.
Rotman, S., Sandovsky-Losica, H. Sionov, E., and Esther, S. 2003. Effect of a chitin derivative in combination with cleaning and prevention solutions for contact lenses on adherence of fungi. Mycoses. 46(3-4): 90-95.
Shahidi, F. 1995. Role of chemistry and biotechnology in value-added utilization of shellfish processing discards. Canadian Chemical News. 47(8): 25-9.
Shahidi, F., Arachchi, J. K. V., and Jeon, Y. J. 1999. Food application of chitin and chitosans. Trends in Food and Technology. 10: 7-12.
Shimahara, K., Onkuchi, K., and Ikeda, M. 1982. A new isolation method of crustacean chitin using proteolytic bacterium Pseudomonas maltophilia. Eds. Hirano, S. and Tokura, S. In: Chitin and Chitosan. The Japanese Society of Chitin and Chitosan. p. 10-14
Skaugrud, O. and Sargent, G. 1990. Chitin and Chitosan: Crustacean Biopolymers with Potential International By-products Conferences. Anchorage, Alaska. p. 61-72.
Slokar, Y. M. and Le Marechal, A. M. 1997. Methods of decoloration of textile wastewaters. Dyes Pigments. 37: 335-356.
Soottawat; B. and Pairat, S. 1993. Chitosan production from carapace and shell of black tiger shrimp(Penaeus monodon). ASEAF Food Journal. 8(4): 145-148.
Soto-Perelta, N. V., Muller, H., and Konner, D. 1989. Effect of chitosan treatments on the clarity and color of apple juice. Journal of Food Science. 54: 495-496.
Tan, S. C., Khor, E., Tan, T. K., and Wong, S. M. 1998. The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta. 45: 713-719.
Toei, K.and Kohara, T. 1976. A conductometric method for colloid titrations. Analytica Chimica Acta. 83(1): 59-65.
Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. and Shakesheff, K. M. 1999. Polymeric system for controlled drug release. Chemical Review. 99: 3181-3198.
Vårum, K. M., Anthonsen, M. W., Grasdalen, H., and Smidsrød, O. 1991. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins(chitosans) by high-field n.m.r. spectroscopy. Carbohydrate Research. 211: 17-23.
Wang, G. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection. 55(11): 916-919.
Wang, S. L. and Chio, S. H. 1998. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme and Microbial Technology. 22(7): 629-633.
Wang W. and Xu, D. 1994. Viscosity and flow properties of concentrated solutions of chitosan with different degree of deacetylation. International Journal of Biological Macromolecules. 16: 149-152.
Werner, S. 2002. Chitin as matrix material forming extremely thin coatings on flexible materials maintaining their characteristics. Germany. Patent No. DE 10060841.
Wong, Y. C., Szeto. S, Cheung, W. H., and Mckay, G. 2003. Equilibrium studies for acid dye adsorption onto chitosan. Langmuir. 19: 7888-7894.
Wu, F. C., Tseng, R. L., and Juang, R. S. 2000. Comparative adsorption of metal and dye on flake- and bead-types chitosans prepared from fishery wastes. Journal of Hazardous Materials. B73: 63-75.
Yang, J. K., Shih, I. L., Tzeng, Y. M., and Wang, S. L. 2000. Production and purification of protease from a bacillus subtilis that can deproteinize crustacean wastes. Enzyme and Microbiol Technology. 26: 406-413
Yang, Y., Wyatt II, D. T., and Bahorsky, M. 1998. Decolorization of dyes using UV/H2O2 photochemical oxidation. Textile Chemist and Colorist. 30(4): 27-35.
Yoshio, A. and Eiji, I. 1975.Pathway of chitosan formation in Mucor rouxii. Enzymic deacetylation of chitin. European Journal of Biochemistry. 55(1): 71-78.
Zhang, W., An, T., Xiao, X., Fu, J., Sheng, G., Cui, M., and Li, G. 2003. Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continous flow photoelectrocatalytic reactor. Applied Catalysis A: General. 225: 221-229.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊