跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邵葉
研究生(外文):Shao,Ye
論文名稱:藉由整合誘因策略與時窗設計最佳化多次配送到手服務
論文名稱(外文):Optimizing Attended Multiple Home Deliveries by Integrating Incentive Schemes and Time-Slot Designs
指導教授:張宗勝張宗勝引用關係
指導教授(外文):Chang, Tsung-Sheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:155
中文關鍵詞:配送到手誘因帶時窗多趟次車輛路徑問題再配送城市物流
外文關鍵詞:attended home deliveryincentivemultiple time windowsmultiple tripsvehicle routing problemre-deliverycity logistics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
配送到手(Attended home delivery)是指網路商店為顧客提供送貨上門的宅配服務中的一種特別服務。在這項服務中,物流士會在指定的配送時段將客戶訂購的商品配送到指定地址,而特別的是,為了保證商品的安全性或新鮮度等,配送地點必須有人在家進行簽收。
提供生鮮蔬果的網絡商店在進行配送到手服務時,會與顧客確定一個較窄的配送時段,而在實際運作中,發現顧客傾向選擇相同的配送時段。因此,該網絡商店為了滿足尖峰時段的顧客訂單,必須投入較多的車隊資源,將生鮮蔬果從倉庫配送到地理位置分散的顧客位址。其次,由於有限的機車承載容量和生鮮蔬果保冷時長,在進行配送到手服務時,物流士在其每天的工作時間內通常需要多趟次地回到倉庫裝載之後需要服務的顧客包裹。最後,由於顧客不在家而導致的配送失敗,迫使物流士必須對這部分顧客進行再配送,從而顯著增加了物流成本。
因此,本研究旨在通過整合誘因策略和時窗設計的方法來幫助提供生鮮蔬果的網絡商店優化其在進行配送到手服務時所遇到的上述三個問題。構建了基於兩階段隨機規劃的考慮了隨機不在家顧客的帶時間窗的多趟次車輛路徑問題的數學模型,並預期利用基於Dantzig-Wolfe Decomposition的演算法求解實例案例。
Attended home delivery is commonly asked service by online grocery shopping customers. The service delivers ordered goods to the customers at appointed service time windows during which the consumers should be present for the delivery. In practice, the customers impose quite similar delivery time windows. Hence, the online grocer needs to dispatch a large fleet of couriers from its depot to service geographically scattered customers. Furthermore, a courier usually needs to run multiple trips to provide attended home delivery within its working hours per day due to limited trip duration and carrying capacity. Moreover, failed deliveries due to unattended customers force couriers to make second delivery and thus significantly increase logistics cost. Therefore, this research intends to help the online grocer optimize its attended multiple home deliveries by integrating incentive schemes and time-slot designs to overcome the aforementioned operating challenges.
摘要......i
Abstract......ii
誌謝......iii
目錄......iv
表目錄......vi
圖目錄......viii
一、緒論......1
1.1 研究背景......1
1.2 研究內容和方法......5
1.3 研究架構......7
二、 配送到手相關文獻回顧......9
2.1 配送時段設計......9
2.2 網購消費者行為......10
2.3 路線規劃策略......11
2.4 配送到手相關文獻小結......14
三、網購消費者不在家率分析......16
3.1 研究方法概述......16
3.2 資料來源與描述......21
3.3 群集分析......23
3.4 貝氏分析......26
四、時窗設計與誘因策略......35
五、多次配送車輛路徑規劃數學模型......40
5.1 問題描述......40
5.2 集合、參數與變數設定......43
5.3 數學模型......46
六、求解演算法......52
6.1 Dantzig-Wolfe 分解法......52
6.2 時窗方案指派問題求解演算法......58
6.2.1 時窗方案指派問題數學模型調整......58
6.2.2 時窗方案指派問題求解演算法設計......60
6.3 考慮隨機不在家顧客的帶時間窗的多趟次車輛路徑問題求解演算法......70
6.3.1 求解Two-Stage MTVRPTWSC主架構......74
6.3.2 混合基因演算法求解MTVRPTWs 算法說明......76
6.3.3 插入法......80
七、實例測試與結果分析......81
7.1 實例數據描述......81
7.2 隨機情境產生......83
7.3 測試結果分析......91
7.3.1 範例測試......91
7.3.2 小案例測試與規模較大的實例測試結果分析......97
八、結論......102
參考文獻......103
附錄A 演算法虛擬碼......107
附錄B 實例測試之顧客資料......109
附錄C 問卷調查......141
Agatz, N., Campbell, A. M., Fleischmann, M., & Savels, M. (2008). Challenges and opportunities in attended home delivery. The vehicle routing problem: Latest advances and new challenges, 379-396.
Agatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time slot management in attended home delivery. Transportation Science, 45(3), 435-449.
Alix Partners. (2016). Final-Mile Delivery: What Do Online Shoppers Want? And How Should Retailers and Their Logistics Partners Respond, Insight e-Commerce. [Online]. Available:http://legacy.alixpartners.com/en/Publications/AllArticles/tabid/635/articleType/ArticleView/articleId/2020/Final-Mile-Delivery.aspx#sthash.hByKEoOI.vyG2MosS.dpbs(2016.7)
Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1-6.
Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.
Blokland, R. H., & Spliet, R. (2017). Incentive Schemes for Attended Home Delivery Service
Bühler, D., Klein, R., & Neugebauer, M. (2016). Model-based delivery cost approximation in attended home services. Computers & Industrial Engineering, 98, 78-90.
Campbell, A. M., & Savelsbergh, M. (2006). Incentive schemes for attended home delivery services. Transportation Science, 40(3), 327-341.
Casazza, M., Ceselli, A., & Létocart, L. (2016). Optimizing time slot allocation in single operator home delivery problems. In Operations Research Proceedings 2014 (pp. 91-97). Springer International Publishing.
Casella, G. and George, E. (1992). Explaining the Gibbs Sampler. The American Statistician., 46(3), 167–174
Cattaruzza, D., Absi, N., & Feillet, D. (2016). Vehicle routing problems with multiple trips. 4OR, 14(3), 223-259.
Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Conejo, A., Castillo, E., Minguez, R., & Garcia-Bertrand, R. (Eds.). (2006). Decomposition techniques in mathematical programming. Berlin: Springer.
El Fallahi, A., Prins, C., & Calvo, R. W. (2008). A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Computers & Operations Research, 35(5), 1725-1741.
Gelfand, A. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.
Gendreau, M., Jabali, O., & Rei, W. (2014). Stochastic vehicle routing problems. Vehicle Routing: Problems, Methods, and Applications, 18, 213-240.
Gendreau, M., Jabali, O., & Rei, W. (2016). 50th anniversary invited article—future research directions in stochastic vehicle routing. Transportation Science, 50(4), 1163-1173.
Han, S., Zhao, L., Chen, K., Luo, Z. W., & Mishra, D. (2017). Appointment scheduling and routing optimization of attended home delivery system with random customer behavior. European Journal of Operational Research, 262(3), 966-980.
Høyland, K., & Wallace, S. W. (2001). Generating scenario trees for multistage decision problems. Management Science, 47(2), 295-307.
Klein, R., Neugebauer, M., Ratkovitch, D., & Steinhardt, C. (2017). Differentiated time slot pricing under routing considerations in attended home delivery. Transportation Science.
Laporte, G., & Louveaux, F. V. (1998). Solving stochastic routing problems with the integer L-shaped method. In Fleet management and logistics (pp. 159-167). Springer, Boston, MA.
Laporte, G., Louveaux, F. V., & Mercure, H. (1994). A priori optimization of the probabilistic traveling salesman problem. Operations Research, 42(3), 543-549.
Laporte, G., Louveaux, F. V., & Van Hamme, L. (2002). An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research, 50(3), 415-423.
Nelson, B. L. (2004). 50th anniversary article: stochastic simulation research in management science. Management Science, 50(7), 855-868.
Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.
Olli Bräysy, Michel Gendreau, (2005) Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transportation Science 39(1):104-118.
Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985-2002.
Pan, S., Giannikas, V., Han, Y., Grover-Silva, E., & Qiao, B. (2017). Using customer-related data to enhance e-grocery home delivery. Industrial Management & Data Systems, 117(9), 1917-1933.
Pan, S., Han, Y., Qiao, B., Grover-Silva, E., & Giannikas, V. (2016, June). Mining Customer-related Data to Enhance Home Delivery in E-commerce: an experimental study. In 6th International Conference on Information Systems, Logistics and Supply Chain (ILS2016).
Pei, X. (2011). Bayesian approach to road safety analyses. 香港大學學位論文.
Solomon, M. M. 1986. On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints. Networks 16 161–174.
Spiegelhalter, David J., Best, Nicola G., Carlin, Bradley P., van der Linde, Angelika (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B. 64 (4): 583–639.
Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual.
Spliet, R., & Desaulniers, G. (2015). The discrete time window assignment vehicle routing problem. European Journal of Operational Research, 244(2), 379-391.
Spliet, R., & Gabor, A. F. (2014). The time window assignment vehicle routing problem. Transportation Science, 49(4), 721-731.
Sungur, I., Ren, Y., Ordóñez, F., Dessouky, M., & Zhong, H. (2010). A model and algorithm for the courier delivery problem with uncertainty. Transportation Science, 44(2), 193-205.
Thompson, J. (2014). Bayesian analysis with stata. College Station, TX: Stata Press.
Voccia, S. A., Melissa Campbell, A., & Thomas, B. W. (2017). The same-day delivery problem for online purchases. Transportation Science, Articles in Advance, 1–18.
Wang, Z., Liang, W., & Hu, X. (2014). A metaheuristic based on a pool of routes for the vehicle routing problem with multiple trips and time windows. Journal of the Operational Research Society, 65(1), 37-48.
Yang, X., Strauss, A. K., Currie, C. S., & Eglese, R. (2014). Choice-based demand management and vehicle routing in e-fulfillment. Transportation Science, 50(2), 473-488.
Yang, X., & Strauss, A. K. (2017). An approximate dynamic programming approach to attended home delivery management. European Journal of Operational Research, 263(3), 935-945.
經濟部. (2012). 101年度新網路時代電子商務發展計畫我國B2C電子商店調查結案報告.
角井亮一.(2016) アマゾンと物流大戦争. NHK出版.
簡禎富,許嘉裕, 工業管理. (2014). 資料挖礦與大數據分析. 前程文化.
宅配の再配達の削減に向けた検討の進め方について(2016)[Online]. Available:http://www.mlit.go.jp/common/01106424.pdf(2017.8.15)
尼爾森對台灣的網絡購物行為的研究報告(2015)[Online]. Available:http://www.nielsen.com/tw/zh/insights/reports/2015/convenience-and-accessibility-are-fueling-taiwans-online-shopping-boom.html(2017.8.20)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top