|
Agatz, N., Campbell, A. M., Fleischmann, M., & Savels, M. (2008). Challenges and opportunities in attended home delivery. The vehicle routing problem: Latest advances and new challenges, 379-396. Agatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time slot management in attended home delivery. Transportation Science, 45(3), 435-449. Alix Partners. (2016). Final-Mile Delivery: What Do Online Shoppers Want? And How Should Retailers and Their Logistics Partners Respond, Insight e-Commerce. [Online]. Available:http://legacy.alixpartners.com/en/Publications/AllArticles/tabid/635/articleType/ArticleView/articleId/2020/Final-Mile-Delivery.aspx#sthash.hByKEoOI.vyG2MosS.dpbs(2016.7) Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1-6. Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons. Blokland, R. H., & Spliet, R. (2017). Incentive Schemes for Attended Home Delivery Service Bühler, D., Klein, R., & Neugebauer, M. (2016). Model-based delivery cost approximation in attended home services. Computers & Industrial Engineering, 98, 78-90. Campbell, A. M., & Savelsbergh, M. (2006). Incentive schemes for attended home delivery services. Transportation Science, 40(3), 327-341. Casazza, M., Ceselli, A., & Létocart, L. (2016). Optimizing time slot allocation in single operator home delivery problems. In Operations Research Proceedings 2014 (pp. 91-97). Springer International Publishing. Casella, G. and George, E. (1992). Explaining the Gibbs Sampler. The American Statistician., 46(3), 167–174 Cattaruzza, D., Absi, N., & Feillet, D. (2016). Vehicle routing problems with multiple trips. 4OR, 14(3), 223-259. Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23. Conejo, A., Castillo, E., Minguez, R., & Garcia-Bertrand, R. (Eds.). (2006). Decomposition techniques in mathematical programming. Berlin: Springer. El Fallahi, A., Prins, C., & Calvo, R. W. (2008). A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Computers & Operations Research, 35(5), 1725-1741. Gelfand, A. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409. Gendreau, M., Jabali, O., & Rei, W. (2014). Stochastic vehicle routing problems. Vehicle Routing: Problems, Methods, and Applications, 18, 213-240. Gendreau, M., Jabali, O., & Rei, W. (2016). 50th anniversary invited article—future research directions in stochastic vehicle routing. Transportation Science, 50(4), 1163-1173. Han, S., Zhao, L., Chen, K., Luo, Z. W., & Mishra, D. (2017). Appointment scheduling and routing optimization of attended home delivery system with random customer behavior. European Journal of Operational Research, 262(3), 966-980. Høyland, K., & Wallace, S. W. (2001). Generating scenario trees for multistage decision problems. Management Science, 47(2), 295-307. Klein, R., Neugebauer, M., Ratkovitch, D., & Steinhardt, C. (2017). Differentiated time slot pricing under routing considerations in attended home delivery. Transportation Science. Laporte, G., & Louveaux, F. V. (1998). Solving stochastic routing problems with the integer L-shaped method. In Fleet management and logistics (pp. 159-167). Springer, Boston, MA. Laporte, G., Louveaux, F. V., & Mercure, H. (1994). A priori optimization of the probabilistic traveling salesman problem. Operations Research, 42(3), 543-549. Laporte, G., Louveaux, F. V., & Van Hamme, L. (2002). An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research, 50(3), 415-423. Nelson, B. L. (2004). 50th anniversary article: stochastic simulation research in management science. Management Science, 50(7), 855-868. Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987. Olli Bräysy, Michel Gendreau, (2005) Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transportation Science 39(1):104-118. Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985-2002. Pan, S., Giannikas, V., Han, Y., Grover-Silva, E., & Qiao, B. (2017). Using customer-related data to enhance e-grocery home delivery. Industrial Management & Data Systems, 117(9), 1917-1933. Pan, S., Han, Y., Qiao, B., Grover-Silva, E., & Giannikas, V. (2016, June). Mining Customer-related Data to Enhance Home Delivery in E-commerce: an experimental study. In 6th International Conference on Information Systems, Logistics and Supply Chain (ILS2016). Pei, X. (2011). Bayesian approach to road safety analyses. 香港大學學位論文. Solomon, M. M. 1986. On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints. Networks 16 161–174. Spiegelhalter, David J., Best, Nicola G., Carlin, Bradley P., van der Linde, Angelika (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B. 64 (4): 583–639. Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual. Spliet, R., & Desaulniers, G. (2015). The discrete time window assignment vehicle routing problem. European Journal of Operational Research, 244(2), 379-391. Spliet, R., & Gabor, A. F. (2014). The time window assignment vehicle routing problem. Transportation Science, 49(4), 721-731. Sungur, I., Ren, Y., Ordóñez, F., Dessouky, M., & Zhong, H. (2010). A model and algorithm for the courier delivery problem with uncertainty. Transportation Science, 44(2), 193-205. Thompson, J. (2014). Bayesian analysis with stata. College Station, TX: Stata Press. Voccia, S. A., Melissa Campbell, A., & Thomas, B. W. (2017). The same-day delivery problem for online purchases. Transportation Science, Articles in Advance, 1–18. Wang, Z., Liang, W., & Hu, X. (2014). A metaheuristic based on a pool of routes for the vehicle routing problem with multiple trips and time windows. Journal of the Operational Research Society, 65(1), 37-48. Yang, X., Strauss, A. K., Currie, C. S., & Eglese, R. (2014). Choice-based demand management and vehicle routing in e-fulfillment. Transportation Science, 50(2), 473-488. Yang, X., & Strauss, A. K. (2017). An approximate dynamic programming approach to attended home delivery management. European Journal of Operational Research, 263(3), 935-945. 經濟部. (2012). 101年度新網路時代電子商務發展計畫我國B2C電子商店調查結案報告. 角井亮一.(2016) アマゾンと物流大戦争. NHK出版. 簡禎富,許嘉裕, 工業管理. (2014). 資料挖礦與大數據分析. 前程文化. 宅配の再配達の削減に向けた検討の進め方について(2016)[Online]. Available:http://www.mlit.go.jp/common/01106424.pdf(2017.8.15) 尼爾森對台灣的網絡購物行為的研究報告(2015)[Online]. Available:http://www.nielsen.com/tw/zh/insights/reports/2015/convenience-and-accessibility-are-fueling-taiwans-online-shopping-boom.html(2017.8.20)
|