跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.144) 您好!臺灣時間:2025/11/30 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李東昇
研究生(外文):Dong-Sheng Li
論文名稱:碳材料的應力釋放機制與作為鋰電池負極之第一原理理論計算研究
論文名稱(外文):First Principles Study of Stress-Relief Mechanism for Amorphous Carbon and the Electrolyte Reduction Reaction at the Graphite Anode for Li-ion Battery
指導教授:郭錦龍
指導教授(外文):Chin-Lung Kuo
口試委員:吳鉉忠林祥泰韋文誠郭哲來
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:127
中文關鍵詞:第一原理理論計算分子動態模擬非晶碳材料應力釋放機制電解液還原反應
外文關鍵詞:First principles calculationsMolecular dynamics simulationsAmorphous carbonStress-relief mechanismElectrolyte reduction reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
碳是一種多樣性的材料,其豐富且截然不同的物理性質主要來自於三種不同鍵結形式組成的各種碳結構所導致。舉例來說,sp2鍵結擁有共振 電子導致石墨烯之導電性質十分優秀,反之由sp3鍵結組成的鑽石則為絕緣材料。由於碳材料在自然界可以豐富的形貌存在,其特殊且多樣的物理性質可廣泛應用於各種工程材料與電子元件的製作。所以了解及掌握碳材料微觀結構變化與其相關重要物理性質的演變便成為一重要課題。 在本研究中,我們嘗試利用第一原理理論計算與分子動態模擬來探討不同形式碳材料的微觀結構與其各種重要性質之間的關聯性。本論文研究主要分為兩個部分。
在第一部分的研究中,我們主要是針對類鑽石非晶碳(tetrahedral amorphous carbon/ hydrogen free diamond-like amorphous carbon, ta-C)的壓應力釋放機制與行為作探討。本文中所使用的非晶碳結構主要是利用分子動態模擬配合液態淬火的方式建構而成,而樣本密度的分布則從2.27 g/cm3至3.45 g/cm3。我們研究結果顯示類鑽石非晶碳中壓應力的釋放機制主要可分成兩種:第一種機制為三配位碳原子轉換為四配位碳原子的鍵結形式轉變,而第二種則為碳原子體積、鍵長與鍵角的最適化調整。針對鍵結形式的轉換,我們分析的結果顯示當系統密度在3.0 g/cm3以上時 (i.e. sp3碳原子比例高於80%),高溫退火處理後的非晶碳結構中三配位的碳原子會有往四配位鍵結形式轉換的傾向發生,而在轉換過程中也同時會伴隨有內部壓應力釋放的效應產生。在另一方面,我們也發現當非晶碳密度低於2.9 g/cm3時 (i.e. sp3碳原子比例低於60%),退火之後的結構中三配位碳原子的比例會大幅增加,且同時會伴隨有三配位碳原子群聚與石墨化的現象發生;然而,在此同時我們卻觀察到系統中的壓應力會有不降反升的情形發生,顯示單靠此種鍵結形式的轉變並無法有效降低非晶碳內部的壓應力。我們後續分析的結果顯示,當非晶碳密度在介於2.9 g/cm3和3.0 g/cm3的過渡區間時,初始結構壓應力偏高的樣本其鍵結形式在退火處理後會往四配位比例增加的方向轉變,而初始壓應力偏低者則會傾向往提高三配位碳原子比例與產生石墨化現象的方向演進。這樣的結果告訴我們碳原子間鍵結形式轉換的傾向除了受到本身密度的影響之外,退火處理前結構內部應力的大小與形式亦扮演著關鍵的角色。
第二部分的研究主要是探討以石墨作為鋰電池負極時,不同表面修飾如何影響碳酸乙烯酯(ethylene carbonate, EC)在電極-電解液界面的還原反應。我們嘗試藉由計算石墨負極在不同表面修飾的情形下,如

Carbon materials can exist in a wide range of forms exhibiting remarkable properties mainly attributed to its diverse bonding order and hybridization states. Due to its versatile properties, carbon has been extensively applied in the fabrication of microelectronic devices and many applications in engineering materials. Therefore, it would be of great interest to develop a detailed understanding regarding the evolution of microstructures and the associated properties of carbon materials with their chemical bonding states. In this thesis, we have two main focuses:
In the first part of this thesis, we investigated the stress-relief mechanisms in the as-deposited tetrahedral amorphous carbon (ta-C, sp3 > 80%) using first-principles calculations and molecular dynamic simulations. The structure models of amorphous carbon were generated over a wide range of density from 2.27 to 3.45 g/cm3 using ab initio molecular dynamics simulations via the liquid-quench process. Our results show that the intrinsic stresses in ta-C can be released via two different mechanisms: one is bonding conversion from the threefold carbon to the fourfold one, while the other is via the relaxation of bond-lengths, bond-angles, and local atomic volumes. Regarding the bonding conversion in a-C, our calculations show that as the density is higher than 3.0 g/cm3 (i.e. sp3 >80%), the threefold carbon atoms are likely to turn into the fourfold ones accompanied by the relief of internal stresses upon thermal annealing. On the contrary, when the density is lower than 2.9 g/cm3 (i.e. sp3 < 60%), the sp2 bonding was found to increase largely after thermal annealing accompanied with the clustering/graphitization of the threefold carbon atoms and the increase of internal stresses. These results also indicate that the compressive stresses in a-C cannot be released simply by the increase of sp2 fraction, sp2 clustering and graphitization in the amorphous bond network. Furthermore, when the density is in-between 2.9 and 3.0 g/cm3, the bonding conversion was found to be largely dependent on the internal stresses in a-C, i.e. the threefold to fourfold carbon conversion is likely to occur under high compressive stress, while the conversion of fourfold to threefold carbon atom is in favor under low intrinsic stress. This result indicates that bonding conversion in a-C may not only depend on its density but also on the intrinsic stress inside.
In the second part, we studied the effect of terminal groups on the reduction reactions occurred at the interface between the graphite anode and the electrolytes. Here we employed the calculations of electronic reduction barrier, i.e. the energy difference between Fermi level and the LUMO of ethylene carbonate (EC), to predict the effect of various functional groups on the tendency of reduction reaction towards EC decomposition. Our calculated results show that both

誌謝 i
摘要 iii
Abstract v
目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 石墨與鑽石基本物理性質 3
第二章 理論基礎與計算條件 5
2.1 波恩-歐本海默近似法 5
2.2 密度泛函理論 6
2.2.1 Thomas-Fermi 模型 6
2.2.2 Hohenberg-Kohn 定理 6
2.2.3 Kohn-Sham 方程式 6
2.2.4 交換相干泛函(exchange-correlation function) 9
2.2.5 虛位勢法(pseudopotential method) 9
2.2.6 分子動態模擬(Molecular Dynamics Simulations) 10
2.3 計算條件 10
第三章 類鑽石非晶碳之應力釋放機制 13
3.1 研究目的及方向 13
3.2 結構建造流程與計算細節 16
3.2.1 無熱處理非晶碳結構建造流程 16
3.2.2 退火後非晶碳結構建造流程 17
3.2.3 計算細節 17
3.3 分析方法 17
3.3.1 鍵結形式分析 17
3.3.2 環分析 18
3.3.3 sp2原子群聚團分析 19
3.3.4 電子態密度分析 19
3.3.5 能隙分析 20
3.3.6 機械性質分析 20
3.4 結果與討論 22
3.4.1 無熱處理非晶碳結構鑑定 22
3.4.2 應力預測 24
3.4.3 類鑽石非晶碳應力釋放機制 25
3.4.4 非晶碳的電阻轉變機制 33
第四章 鋰電池石墨負極處發生之電解液還原反應 63
4.1 研究目的及方向 63
4.2 能帶並列方法 65
4.3 結構建造流程與計算細節 66
4.3.1 LiC6塊材結構建造 66
4.3.2 EC(FEC)塊材結構建造 67
4.3.3 LiC6表面結構建造 67
4.3.4 LiC6與EC(FEC)接面結構建造 67
4.3.5 計算細節 68
4.4 分析方法 69
4.4.1 功函數分析 69
4.4.2 貝德電荷分析(Bader charge analysis) 69
4.4.3 電子還原能障分析 70
4.5 結果與討論 70
4.5.1 電解液單分子結構分析 70
4.5.2 電解液塊材結構分析 70
4.5.3 LiC6塊材與表面結構分析 72
4.5.4 LiC6與EC(FEC)接面結構分析 73
4.5.5 利用分子動態模擬驗證電子還原能障的計算結果 75
第五章 結論 115
參考文獻 119


1.John B. Goodenough and Kyu-Sung Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society 135 (4), 1167-1176 (2013).
2.Kristin Persson, Yoyo Hinuma, Ying Shirley Meng, Anton Van der Ven and Gerbrand Ceder, Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations, Physical Review B 82 (12), 125416 (2010).
3.K. R. Kganyago and P. E. Ngoepe, Structural and electronic properties of lithium intercalated graphite LiC6, Physical Review B 68 (20), 205111 (2003).
4.Kevin Leung and Joanne L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Physical Chemistry Chemical Physics 12 (25), 6583-6586 (2010).
5.B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chemical Physics Letters 307 (3–4), 153-157 (1999).
6.Zhuang-Jun Fan, Jun Yan, Tong Wei, Guo-Qing Ning, Lin-Jie Zhi, Jin-Cheng Liu, Dian-Xue Cao, Gui-Ling Wang and Fei Wei, Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries, ACS Nano 5 (4), 2787-2794 (2011).
7.B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu and O. Zhou, Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes, Chemical Physics Letters 327 (1–2), 69-75 (2000).
8.Shin R. Mukai, Takahiro Hasegawa, Michiya Takagi and Hajime Tamon, Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition, Carbon 42 (4), 837-842 (2004).
9.LeiLei Tian, QuanChao Zhuang, Jia Li, YueLi Shi, JianPeng Chen, Feng Lu and ShiGang Sun, Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets, Chin. Sci. Bull. 56 (30), 3204-3212 (2011).
10.EunJoo Yoo, Jedeok Kim, Eiji Hosono, Hao-shen Zhou, Tetsuichi Kudo and Itaru Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters 8 (8), 2277-2282 (2008).
11.Elad Pollak, Baisong Geng, Ki-Joon Jeon, Ivan T. Lucas, Thomas J. Richardson, Feng Wang and Robert Kostecki, The Interaction of Li+ with Single-Layer and Few-Layer Graphene, Nano Letters 10 (9), 3386-3388 (2010).
12.Nitin A. Kaskhedikar and Joachim Maier, Lithium Storage in Carbon Nanostructures, Advanced Materials 21 (25-26), 2664-2680 (2009).
13.Dana Krepel and Oded Hod, Lithium adsorption on armchair graphene nanoribbons, Surface Science 605 (17–18), 1633-1642 (2011).
14.Charles de las Casas and Wenzhi Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources 208 (0), 74-85 (2012).
15.J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering: R: Reports 37 (4–6), 129-281 (2002).
16.Charles W. Bauschlicher Jr and John W. Lawson, Amorphous carbon and its surfaces, Chemical Physics 374 (1–3), 77-82 (2010).
17.Saito Seiki, M. Ito Atsushi, Takayama Arimichi and Nakamura Hiroaki, Anisotropic Bond Orientation of Amorphous Carbon by Deposition, Japanese Journal of Applied Physics 51 (1S), 01AC05 (2012).
18.P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne and J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Physical Review B 48 (7), 4777-4782 (1993).
19.M. Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J. Amaratunga and W. I. Milne, Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films, Journal of Applied Physics 81 (1), 139-145 (1997).
20.Shi Xu, B. K. Tay, H. S. Tan, Li Zhong, Y. Q. Tu, S. R. P. Silva and W. I. Milne, Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy, Journal of Applied Physics 79 (9), 7234-7240 (1996).
21.A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge and J. Robertson, Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Physical Review B 62 (16), 11089-11103 (2000).
22.P. Patsalas, S. Kaziannis, C. Kosmidis, D. Papadimitriou, G. Abadias and G. A. Evangelakis, Optimized pulsed laser deposition by wavelength and static electric field control: The case of tetrahedral amorphous carbon films, Journal of Applied Physics 101 (12), - (2007).
23.Th Frauenheim, P. Blaudeck, U. Stephan and G. Jungnickel, Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs, Physical Review B 48 (7), 4823-4834 (1993).
24.C. W. Chen and J. Robertson, Nature of disorder and localization in amorphous carbon, Journal of Non-Crystalline Solids 227–230, Part 1 (0), 602-606 (1998).
25.D. G. McCulloch, D. R. McKenzie and C. M. Goringe, Ab initio simulations of the structure of amorphous carbon, Physical Review B 61 (3), 2349-2355 (2000).
26.N. A. Marks, N. C. Cooper, D. R. McKenzie, D. G. McCulloch, P. Bath and S. P. Russo, Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon, Physical Review B 65 (7), 075411 (2002).
27.J. T. Titantah and D. Lamoen, Technique for the sp2∕sp3 characterization of carbon materials: ab initio calculation of near-edge structure in electron-energy-loss spectra, Physical Review B 70 (7), 075115 (2004).
28.J. T. Titantah and D. Lamoen, sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques, Carbon 43 (6), 1311-1316 (2005).
29.Jiecai Han, Wei Gao, Jiaqi Zhu, Songhe Meng and Weitao Zheng, Density-functional theory study of the microstructure, electronic structure, and optical properties of amorphous carbon, Physical Review B 75 (15), 155418 (2007).
30.D. S. da Silva, A. D. S. Cortes, M. H. Oliveira, E. F. Motta, G. A. Viana, P. R. Mei and F. C. Marques, Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells, Journal of Applied Physics 110 (4), - (2011).
31.A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources 157 (1), 11-27 (2006).
32.Moni Kanchan Datta, Jeffrey Maranchi, Sung Jae Chung, Rigved Epur, Karan Kadakia, Prashanth Jampani and Prashant N. Kumta, Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries, Electrochimica Acta 56 (13), 4717-4723 (2011).
33.NigelA Marks, in Computer-Based Modeling of Novel Carbon Systems and Their Properties, edited by Luciano Colombo and Annalisa Fasolino (Springer Netherlands, 2010), Vol. 3, pp. 129-169.
34.A. C. Ferrari, B. Kleinsorge, N. A. Morrison, A. Hart, V. Stolojan and J. Robertson, Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon, Journal of Applied Physics 85 (10), 7191-7197 (1999).
35.J. O. Orwa, I. Andrienko, J. L. Peng, S. Prawer, Y. B. Zhang and S. P. Lau, Thermally induced sp2 clustering in tetrahedral amorphous carbon (ta-C) films, Journal of Applied Physics 96 (11), 6286-6297 (2004).
36.P. R. Wallace, The Band Theory of Graphite, Physical Review 71 (9), 622-634 (1947).
37.Vasilis Lavrakas, Textbook errors: Guest column. XII: The lubricating properties of graphite, Journal of Chemical Education 34 (5), 240 (1957).
38.S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat Mater 11 (3), 203-207 (2012).
39.J. Walker, Optical absorption and luminescence in diamond, Reports on Progress in Physics 42 (10), 1605 (1979).
40.M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik 389 (20), 457-484 (1927).
41.P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136 (3B), B864-B871 (1964).
42.W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140 (4A), A1133-A1138 (1965).
43.L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society 23 (05), 542-548 (1927).
44.P. A. M. Dirac, Note on Exchange Phenomena in the Thomas Atom, Mathematical Proceedings of the Cambridge Philosophical Society 26 (03), 376-385 (1930).
45.C. A. Davis, G. A. J. Amaratunga and K. M. Knowles, Growth Mechanism and Cross-Sectional Structure of Tetrahedral Amorphous Carbon Thin Films, Physical Review Letters 80 (15), 3280-3283 (1998).
46.C. W. Chen and J. Robertson, Surface atomic properties of tetrahedral amorphous carbon, Diamond and Related Materials 15 (4–8), 936-938 (2006).
47.R. C. Powles, N. A. Marks and D. W. M. Lau, Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors, Physical Review B 79 (7), 075430 (2009).
48.M. P. Siegal, D. R. Tallant, P. N. Provencio, D. L. Overmyer, R. L. Simpson and L. J. Martinez-Miranda, Ultrahard carbon nanocomposite films, Applied Physics Letters 76 (21), 3052-3054 (2000).
49.Todd M. Alam, T. A. Friedmann, Peter A. Schultz and Daniel Sebastiani, Low temperature annealing in tetrahedral amorphous carbon thin films observed by 13C NMR spectroscopy, Physical Review B 67 (24), 245309 (2003).
50.D. S. Grierson, A. V. Sumant, A. R. Konicek, T. A. Friedmann, J. P. Sullivan and R. W. Carpick, Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon, Journal of Applied Physics 107 (3), - (2010).
51.O. R. Monteiro, J. W. Ager, D. H. Lee, R. Yu Lo, K. C. Walter and M. Nastasi, Annealing of nonhydrogenated amorphous carbon films prepared by filtered cathodic arc deposition, Journal of Applied Physics 88 (5), 2395 (2000).
52.J. P. Sullivan, T. A. Friedmann and A. G. Baca, Stress relaxation and thermal evolution of film properties in amorphous carbon, Journal of Electronic Materials 26 (9), 1021-1029 (1997).
53.A. C. Ferrari, S. E. Rodil, J. Robertson and W. I. Milne, Is stress necessary to stabilise sp3 bonding in diamond-like carbon?, Diamond and Related Materials 11 (3–6), 994-999 (2002).
54.P. C. Kelires, Stress properties of diamond-like amorphous carbon, Physica B: Condensed Matter 296 (1–3), 156-162 (2001).
55.J. T. Titantah and D. Lamoen, The effect of temperature on the structural, electronic and optical properties of sp 3 -rich amorphous carbon, Journal of Physics: Condensed Matter 20 (3), 035216 (2008).
56.A. Yu Belov and H. U. Jager, Formation and evolution of sp2 clusters in amorphous carbon networks as predicted by molecular dynamics annealing simulations, Diamond and Related Materials 14 (3–7), 1014-1018 (2005).
57.A. Yu Belov, Atomic scale simulation of structural relaxation processes in tetrahedral amorphous carbon, Computational Materials Science 27 (1–2), 30-35 (2003).
58.N. A. Marks, M. F. Cover and C. Kocer, Simulating temperature effects in the growth of tetrahedral amorphous carbon: The importance of infrequent events, Applied Physics Letters 89 (13), - (2006).
59.Longqiu Li, Ming Xu, Wenping Song, Andrey Ovcharenko, Guangyu Zhang and Ding Jia, The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method, Applied Surface Science 286 (0), 287-297 (2013).
60.N. A. Marks, Evidence for subpicosecond thermal spikes in the formation of tetrahedral amorphous carbon, Physical Review B 56 (5), 2441-2446 (1997).
61.D. S. Franzblau, Computation of ring statistics for network models of solids, Physical Review B 44 (10), 4925-4930 (1991).
62.J. Robertson and E. P. O’Reilly, Electronic and atomic structure of amorphous carbon, Physical Review B 35 (6), 2946-2957 (1987).
63.A. Yu Belov and H. U. Jager, Relaxation kinetics in amorphous carbon films: An insight from atomic scale simulation, Thin Solid Films 482 (1–2), 74-78 (2005).
64.D. R. McKenzie, A. R. Merchant, D. G. McCulloch, H. Malloch, N. A. Marks and M. M. M. Bilek, Ab initio studies of amorphous carbon films, Surface and Coatings Technology 198 (1–3), 212-216 (2005).
65.A. M. Ito, A. Takayama, Y. Oda and H. Nakamura, The First principle calculation of bulk modulus and Young''s modulus for amorphous carbon material, Journal of Physics: Conference Series 518 (1), 012011 (2014).
66.A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61 (20), 14095-14107 (2000).
67.A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B 64 (7), 075414 (2001).
68.A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 362 (1824), 2477-2512 (2004).
69.Miguel A. Caro, Remi Zoubkoff, Olga Lopez-Acevedo and Tomi Laurila, Atomic and electronic structure of tetrahedral amorphous carbon surfaces from density functional theory: Properties and simulation strategies, Carbon (0).
70.D. R. McKenzie, D. Muller and B. A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon, Physical Review Letters 67 (6), 773-776 (1991).
71.Y. Lifshitz, Hydrogen-free amorphous carbon films: correlation between growth conditions and properties, Diamond and Related Materials 5 (3–5), 388-400 (1996).
72.Kreupl Franz, Bruchhaus Rainer, Majewski Petra, B. Philipp Jan, Symanczyk Ralf, Happ Thomas, Arndt Christian, Vogt Mirko, Zimmermann Roy, Buerke Axel, P. Graham Andrew and Kund Michael, Carbon-Based Resistive Memory, Digest of the International Electron Devices Meeting (IEDM), 521-524 (2008).
73.Sebastian Abu, Pauza Andrew, Rossel Christophe, M. Shelby Robert, Rodriguez Arantxa Fraile, Pozidis Haralampos and Eleftheriou Evangelos, Resistance switching at the nanometre scale in amorphous carbon, New Journal of Physics 13 (1), 013020 (2011).
74.Alexander Sinitskii and James M. Tour, Lithographic Graphitic Memories, ACS Nano 3 (9), 2760-2766 (2009).
75.Y. Li, A. Sinitskii and J. M. Tour, Electronic two-terminal bistable graphitic memories, Nat Mater 7 (12), 966-971 (2008).
76.Fu Di, Xie Dan, Feng Tingting, Chenhui Zhang, Jiebin Niu, Qian He and Liu Litian, Unipolar Resistive Switching Properties of Diamondlike Carbon-Based RRAM Devices, Electron Device Letters, IEEE 32 (6), 803-805 (2011).
77.Di Fu, Dan Xie, Chen-Hui Zhang, Di Zhang, Jie-Bin Niu, He Qian and Li-Tian Liu, Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications, Chinese Physics Letters 27 (9), 098102 (2010).
78.Ximeng Guan, He Yu, Zhao Liang, Zhang Jinyu, Wang Yan, Qian He and Yu Zhiping, presented at the Electron Devices Meeting (IEDM), 2009 IEEE International, 2009 (unpublished).
79.K. Sarakinos, A. Braun, C. Zilkens, S. Mraz, J. M. Schneider, H. Zoubos and P. Patsalas, Exploring the potential of high power impulse magnetron sputtering for growth of diamond-like carbon films, Surface and Coatings Technology 206 (10), 2706-2710 (2012).
80.S. Logothetidis, M. Gioti, P. Patsalas and C. Charitidis, Insights on the deposition mechanism of sputtered amorphous carbon films, Carbon 37 (5), 765-769 (1999).
81.A. C. Ferrari, J. Robertson, M. G. Beghi, C. E. Bottani, R. Ferulano and R. Pastorelli, Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering, Applied Physics Letters 75 (13), 1893-1895 (1999).
82.D. Guerard and A. Herold, Intercalation of lithium into graphite and other carbons, Carbon 13 (4), 337-345 (1975).
83.X. Li, F. Cheng, B. Guo and J. Chen, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries, The journal of physical chemistry. B 109 (29), 14017-14024 (2005).
84.Doron Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89 (2), 206-218 (2000).
85.Kristina Edstrom, Marie Herstedt and Daniel P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources 153 (2), 380-384 (2006).
86.Nam-Soon Choi, Kyoung Han Yew, Kyu Youl Lee, Minseok Sung, Ho Kim and Sung-Soo Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, Journal of Power Sources 161 (2), 1254-1259 (2006).
87.Nam-Soon Choi, Kyoung Han Yew, Ho Kim, Sung-Soo Kim and Wan-Uk Choi, Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte, Journal of Power Sources 172 (1), 404-409 (2007).
88.Yu-Chan Yen, Sung-Chieh Chao, Hung-Chun Wu and Nae-Lih Wu, Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells, Journal of The Electrochemical Society 156 (2), A95-A102 (2009).
89.Candace K. Chan, Riccardo Ruffo, Seung Sae Hong and Yi Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources 189 (2), 1132-1140 (2009).
90.Ryan Jorn, Revati Kumar, Daniel P. Abraham and Gregory A. Voth, Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring, The Journal of Physical Chemistry C 117 (8), 3747-3761 (2013).
91.Sang-Pil Kim, Adri C. T. van Duin and Vivek B. Shenoy, Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study, Journal of Power Sources 196 (20), 8590-8597 (2011).
92.Kevin Leung, Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries, The Journal of Physical Chemistry C 117 (4), 1539-1547 (2012).
93.Jiamei Yu, Perla B. Balbuena, Joanne Budzien and Kevin Leung, Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate, Journal of The Electrochemical Society 158 (4), A400-A410 (2011).
94.Mengyun Nie, Dinesh Chalasani, Daniel P. Abraham, Yanjing Chen, Arijit Bose and Brett L. Lucht, Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy, The Journal of Physical Chemistry C 117 (3), 1257-1267 (2013).
95.Kevin Leung, Susan B. Rempe, Michael E. Foster, Yuguang Ma, Julibeth M. Martinez del la Hoz, Na Sai and Perla B. Balbuena, Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries, Journal of The Electrochemical Society 161 (3), A213-A221 (2014).
96.Julibeth M. Martinez de la Hoz, Kevin Leung and Perla B. Balbuena, Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface, ACS Applied Materials &; Interfaces 5 (24), 13457-13465 (2013).
97.P. Ganesh, P. R. C. Kent and De-en Jiang, Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics, The Journal of Physical Chemistry C 116 (46), 24476-24481 (2012).
98.Kevin Leung, Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms, Chemical Physics Letters 568–569 (0), 1-8 (2013).
99.Kevin Leung, Yue Qi, Kevin R. Zavadil, Yoon Seok Jung, Anne C. Dillon, Andrew S. Cavanagh, Se-Hee Lee and Steven M. George, Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies, Journal of the American Chemical Society 133 (37), 14741-14754 (2011).
100.Renjie Chen, Feng Wu, Li Li, Yibiao Guan, Xinping Qiu, Shi Chen, Yuejiao Li and Shengxian Wu, Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries, Journal of Power Sources 172 (1), 395-403 (2007).
101.S. D. Xu, Q. C. Zhuang, J. Wang, Y. Q. Xu and Y. B. Zhu, New Insight into Vinylethylene Carbonate as a Film Forming Additive to Ethylene Carbonate-Based Electrolytes for Lithium-Ion Batteries, Int J Electrochem Sc 8 (6), 8058-8076 (2013).
102.Xiaohua Xie, Libao Chen, Wei Sun and Jingying Xie, Gamma-crotonlatone as an electrolyte additive for improving the cyclability of MCMB electrode, Journal of Power Sources 174 (2), 784-788 (2007).
103.YAN Hui ZHANG Ding, ZHANG Huan and QI Lu*, Electrochemical Performance of Solid Polymer Electrolyte PEO20-LiTf-Urea1.5, CHEMICAL RESEARCH IN CHINESE UNIVERSITIES 27 (3), 478-481 (2011).
104.Venkat Srinivasan, Batteries for Vehicular Applications, (2008).
105.Jie Xiao, Wu Xu, Deyu Wang, Daiwon Choi, Wei Wang, Xiaolin Li, Gordon L. Graff, Jun Liu and Ji-Guang Zhang, Stabilization of Silicon Anode for Li-Ion Batteries, Journal of The Electrochemical Society 157 (10), A1047 (2010).
106.N. A. W. Holzwarth and S. Rabii, Energy band structure of lithium—graphite intercalation compound, Materials Science and Engineering 31 (0), 195-200 (1977).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top