|
[1] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
[2] Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32, 159-188.
[3] Azzalini A. and Capitanio A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61, 579-602.
[4] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715-726.
[5] Berkson, J. (1980). Minimum chi-square, not maximum likelihood! Annals of Statistics, 8, 457-487.
[6] Chiang, J. Y. (2006). Design of acceptance control chart for skew normal data. Master thesis, Department of Statistics, Tamkang University.
[7] Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey.
[8] Ferguson, T. S. (1958). Amethod of generating best asymptotically normal estimates with application to the estimation of bacterial densities. Annals of Mathematical Statistics, 29, 1046-1062.
[9] Ferreira, J. T. A. S. and Steel, M. F. J. (2007). A new class of skewed multivariate distributions with applications to regression analysis. Statistica Sinica, 17, 505-529.
[10] Gupta, A. K., Gonzlález-Farías, G. and Domínguez-Molina, J. A. (2004). A multivariate skew normal distribution. Journal of Multivariate Analysis, 89, 181-190.
[11] Harris, R. R. and Kanji, G. K. (1983). On the use of minimum chi-square estimation. Statistician, 32, 379-394.
[12] Land, C. E. (1972). An evaluation of approximate confidence interval estimation methods for lognormal means. Technometrics, 14, 145-158.
[13] Lehmann, E. L. and Casella, George (1998). Theory of Point Estimation, 2nd edition. Springer.
[14] Liao, C. C. (2009). Robustness of confidence intervals for a normal mean and some interval estimators, powerful unbiased tests under skew-normal model. Master thesis, Department of Applied Mathematics, National Dong Hwa University.
[15] Liseo, B. and Loperfido, N. (2006). A note on reference priors for the scalar skew-normal distribution. Journal of Statistical Planning and Inference, 136, 373-389.
[16] Monti, A. C. (2003). A note on the estimation of the skew normal and the skew exponential power distributions. Metron LXI, 205-219.
[17] Neyman, J. (1949). Contribution to the theory of the χ2 test. First Berkley Symposium on Mathematical Statistics and Probability, University of California Press, 239-273.
[18] Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics, 31, 129-150.
[19] Sartori, N. (2006). Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. Journal of Statistical Planning and Inference, 136, 4259-4275.
[20] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York.
[21] Yu, W. W. (2005). Confidence intervals for skewed healthcare expenditure data from the Medical Expenditure Panel Survey. 2005 Proceedings of the American Statistical Association, Joint Statistical Meetings-Section on Survey Research Methods, 3725-3730.
[22] Zhou, X. H. and Gao, S. (1997). Confidence intervals for the log-normal mean. Statistics in Medicine, 16, 783-790.
[23] Zhou, X. H. and Gao, S. (2000). One-sided confidence intervals for means of positively skewed distributions. American Statistician, 54, 100-104.
|