跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張貴雄
研究生(外文):Kuei-Hsiung Chang
論文名稱:偏斜常態分佈參數估計的探討及具標準化偏斜常態誤差下母體平均值之漸近信賴區間的建構與應用
論文名稱(外文):Estimations of Parameters under a Skew-Normal Model and Asymptotic Confidence Intervals for the Mean of a Population with Standardized Skew-Normal Error
指導教授:曾玉玲曾玉玲引用關係
指導教授(外文):Yu-Ling Tseng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:58
中文關鍵詞:最大概似估計量之大樣本理論δ-方法信賴區間覆蓋機率偏斜常態模型MEPS的資料分析
外文關鍵詞:Large sample theory of MLEδ-methodConfidence intervalsCoverage probabilitySkew normal modelAnalyses of the MEPS data
相關次數:
  • 被引用被引用:1
  • 點閱點閱:561
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
常態分佈的假設經常被廣泛的運用於統計分析模型。然而,在資料具偏斜特性之分析,常態分配的假設並非合適。本研究試著從Azzalini(1985)所提出的偏斜常態分佈,常態分佈為其一特例,的架構上,提出一些統計推論方法及其應用。值得一提,儘管在文獻上已提出許多有關偏斜常態模型在機率上的特性,不過在統計推論裡,卻存在某些的困難度。事實上,在探究參數之最大概似估計量中,該模型下複雜的概似函數會導致出在數值運算上的問題。

在本文中,我們首先針對Monti(2003)所提出的兩種方法中所牽涉之常數k如何選擇的問題進行探討。Monti宣稱利用此兩種方法於偏斜常態模型下尋求參數估計量,可以減低在數值運算上的困難度,然而,Monti文中只呈現採用k=n樣本數的方式來估計參數的比較結果。因此,在此研究中,我們首先考慮從已知參數最大概似估計量的模型:指數和常態模型著手討論“k=n”此一選擇的適當性;緊接著,理所當然地,我們也會在偏斜常態模型下論述此議題。從我們的模擬結果指出,對於給定一些k≠n的設定下,相對於k=n,利用此兩種方法可以得到表現比較好的估計值。因此,我們的研究結果強烈質疑 Monti(2003)採取k=n的選擇並非是最適當。

其次,我們探討在偏斜常態模型下的一些統計推論問題。更明確地說,我們提供了在標準化的偏斜常態誤差分佈的建構下,母體平均值之單邊或雙邊漸近信賴區間。此推論問題看似基本,卻是統計推論問題首重的核心議題。綜合理論推導及模擬的結果,我們所提出的雙邊漸近信賴區間,在適中到大樣本數之下,表現是令人滿意的。我們也發現所提的漸近信賴區間,特別是單邊,的覆蓋機率,會受到偏斜參數是正或負和值的大小而有明顯的變化。

最後,我們以偏斜常態模型為基礎,利用從MEPS裡健保費用的資料來說明,如何應用母體平均值之雙邊漸近信賴區間。事實上,Yu(2005)已利用此筆資料,從常態、伽瑪、對數常態分佈之下的信賴區間進行分析與比較。透過分析和模擬的結果,我們成功地運用偏斜常態模型於實際資料分析。更值得一提的是,在合理的樣本數下,我們所提出的雙邊漸近信賴區間的覆蓋機率比
Yu(2005)所考慮之三種信賴區間的覆蓋機率高。
The assumption of normality is widely applied in statistical models, however it is sometimes hard to be justified when analyzing real data. The skew normal distribution is therefore proposed as an extension of the normal distribution that includes a skewness parameter. Despite its many probabilistic properities being derived, there are still certain difficulties in statistical inferences under skew normal models. In particular, the complicated form of the likelihood function under a skew normal model causes numerical issues in finding maximum likelihood estimators (MLE) of parameters.

In this study, we first study the choice of a crucial constant k to the two methods provided in Monti (2003) to ease above mentioned numerical difficulty in finding maximum likelihood estimators for skew normal parameters; k=n the sample size is used by Monti. The problem is scrutinized, first, under exponential, normal models
where MLE's are known, then, of course, under the skew normal model. Our simulation results indicate that these two methods give better estimators in terms of mean squared error, with choices of k≠n for many of our studied cases, where some are under the skew normal model. Thus, taking into account our findings, the selection k=n taken in
Monti (2003) is seriously questioned.

Next, in this work, we take on the statistical inference issue, under a skew normal model, from a basic but important framework. More precisely, we provide one-sided or two-sided asymptotic confidence intervals for the mean of a population with standardized skew normal error distribution. Based on theoretical derivations and
simulation results, we find that the performance of
two-sided confidence interval is satisfactory for moderate to large sample sizes. Also, the coverage probabilities of confidence intervals, especially one-sided, vary drastically with the skewness parameters.

Finally, we illustrate how to apply the asymptotic
two-sided confidence interval for the population mean under a skew normal model to analyze the health care expenditure data from MEPS, which is analyzed, from confidence interval aspect, in Yu (2005) under normal, gamma, and lognormal models. The results we have here indicate that, successfully, we implement the skew normal model for real data analyses, and better off, our asymptotic two-sided confidence interval has higher coverage probabilities than those considered in Yu (2005) for reasonable sample sizes.
1 Introduction
2 Some notes on the methods proposed in Monti (2003) for
estimating parameters under a SN model
3 Asymptotic confidence intervals for the mean of a
population with standardized SN-error
4 An application of using a SN model to analyze the health
care expenditure data from MEPS
5 Conclusions
Appendix

[1] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.

[2] Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32, 159-188.

[3] Azzalini A. and Capitanio A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61,
579-602.

[4] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83,
715-726.

[5] Berkson, J. (1980). Minimum chi-square, not maximum likelihood! Annals of Statistics, 8, 457-487.

[6] Chiang, J. Y. (2006). Design of acceptance control chart for skew normal data. Master thesis, Department of Statistics, Tamkang University.

[7] Cramér, H. (1946). Mathematical Methods of Statistics.
Princeton University Press, Princeton, New Jersey.

[8] Ferguson, T. S. (1958). Amethod of generating best asymptotically normal estimates with application to the estimation of bacterial densities. Annals of Mathematical Statistics, 29, 1046-1062.

[9] Ferreira, J. T. A. S. and Steel, M. F. J. (2007). A new class of skewed multivariate distributions with applications to regression analysis. Statistica Sinica, 17, 505-529.

[10] Gupta, A. K., Gonzlález-Farías, G. and Domínguez-Molina, J. A. (2004). A multivariate skew normal distribution. Journal of Multivariate Analysis, 89, 181-190.

[11] Harris, R. R. and Kanji, G. K. (1983). On the use of minimum chi-square estimation. Statistician, 32, 379-394.

[12] Land, C. E. (1972). An evaluation of approximate
confidence interval estimation methods for lognormal means. Technometrics, 14, 145-158.

[13] Lehmann, E. L. and Casella, George (1998). Theory of Point Estimation, 2nd edition. Springer.

[14] Liao, C. C. (2009). Robustness of confidence intervals for a normal mean and some interval estimators, powerful unbiased tests under skew-normal model. Master thesis,
Department of Applied Mathematics, National Dong Hwa University.

[15] Liseo, B. and Loperfido, N. (2006). A note on reference priors for the scalar skew-normal distribution. Journal of Statistical Planning and Inference, 136, 373-389.

[16] Monti, A. C. (2003). A note on the estimation of the skew normal and the skew exponential power distributions. Metron LXI, 205-219.

[17] Neyman, J. (1949). Contribution to the theory of the χ2 test. First Berkley Symposium on Mathematical Statistics and Probability, University of California Press, 239-273.

[18] Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics, 31, 129-150.

[19] Sartori, N. (2006). Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. Journal of Statistical Planning and Inference, 136, 4259-4275.

[20] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York.

[21] Yu, W. W. (2005). Confidence intervals for skewed healthcare expenditure data from the Medical Expenditure Panel Survey. 2005 Proceedings of the American Statistical
Association, Joint Statistical Meetings-Section on Survey Research Methods, 3725-3730.

[22] Zhou, X. H. and Gao, S. (1997). Confidence intervals for the log-normal mean. Statistics in Medicine, 16,
783-790.

[23] Zhou, X. H. and Gao, S. (2000). One-sided confidence intervals for means of positively skewed distributions. American Statistician, 54, 100-104.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top