|
[1] R.P. Feynman, There's Plenty of Room at the Bottom, Engineering and Science, 23 (1960) 22-36. [2] K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology, Doubleday, London, 1986. [3] Scale of Things Chart, designed by the Office of Basic Energy Sciences, http://science.energy.gov/bes/news-and-resources/scale-of-things-chart/. [4] W. Lu, C.M. Lieber, Nanoelectronics from the Bottom up, Nature Materials, 6 (2007) 841-850. [5] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163. [6] L. Brus, Quantum Crystallites and Nonlinear Optics, Applied Physics A, 53 (1991) 465-474. [7] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56-58. [8] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (2003) 353-389. [9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669. [10] A.K. Geim, Graphene: Status and Prospects, Science, 324 (2009) 1530-1534. [11] K. Saito, J. Nakamura, A. Natori, Ballistic Thermal Conductance of a Graphene Sheet, Physical Review B, 76 (2007) 115409. [12] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Physical Review Letters, 105 (2010) 136805. [13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-Layer MoS2 Transistors, Nature Nanotechnology, 6 (2011) 147-150. [14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, Nature Nanotechnology, 7 (2012) 699-712. [15] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, Nano Letters, 12 (2012) 1538-1544. [16] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS2, ACS Nano, 5 (2011) 9934-9938. [17] R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons, Optics Express, 13 (2005) 977-984. [18] K.A. Willets, R.P.V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, 58 (2007) 267-297. [19] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988. [20] V. Giannini, A.I. Fernandez-Domínguez, S.C. Heck, S.A. Maier, Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters, Chemical Reviews, 111 (2011) 3888-3912. [21] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. [22] A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nanofabricated Media with Negative Permeability at Visible Frequencies, Nature, 438 (2005) 335-338. [23] H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-Dimensional Optics with Surface Plasmon Polaritons, Applied Physics Letters, 81 (2002) 1762-1764. [24] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Channel Plasmon Subwavelength Waveguide Components Including Interferometers and Ring Resonators, Nature, 440 (2006) 508-511. [25] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays, Nature, 391 (1998) 667-669. [26] T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P.V. Duyne, Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles, The Journal of Physical Chemistry B, 104 (2000) 10549-10556. [27] S.M. Weekes, F.Y. Ogrin, W.A. Murray, P.S. Keatley, Macroscopic Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere Templates, Langmuir, 23 (2007) 1057-1060. [28] W.A. Murray, S. Astilean, W.L. Barnes, Transition from Localized Surface Plasmon Resonance to Extended Surface Plasmon-Polariton as Metallic Nanoparticles Merge to Horm a Periodic Hole Array, Physical Review B, 69 (2004) 165407. [29] E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science, 302 (2003) 419-422. [30] V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Light Trapping in Ultrathin Plasmonic Solar Cells, Optics Express, 18 (2010) A237-A245. [31] V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, Nano Letters, 8 (2008) 4391-4397. [32] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements, Advanced Materials, 21 (2009) 3504-3509. [33] H.A. Atwater, A. Polman, Plasmonics for Improved Photovoltaic Devices, Nature Materials, 9 (2010) 205-213. [34] V.E. Ferry, J.N. Munday, H.A. Atwater, Design Considerations for Plasmonic Photovoltaics, Advanced Materials, 22 (2010) 4794-4808. [35] K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells, Applied Physics Letters, 93 (2008) 121904-121906. [36] H.R. Stuart, D.G. Hall, Island Size Effects in Nanoparticle-Enhanced Photodetectors, Applied Physics Letters, 73 (1998) 3815-3817. [37] M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with Active Optical Antennas, Science, 332 (2011) 702-704. [38] H.-Y. Chen, C.-L. He, C.-Y. Wang, M.-H. Lin, D. Mitsui, M. Eguchi, T. Teranishi, S. Gwo, Far-Field Optical Imaging of a Linear Array of Coupled Gold Nanocubes: Direct Visualization of Dark Plasmon Propagating Modes, ACS Nano, 5 (2011) 8223-8229. [39] G.F. Walsh, L.D. Negro, Engineering Plasmon-Enhanced Au Light Emission with Planar Arrays of Nanoparticles, Nano Letters, 13 (2013) 786-792. [40] D.M. O'Carroll, C.E. Hofmann, H.A. Atwater, Conjugated Polymer/Metal Nanowire Heterostructure Plasmonic Antennas, Advanced Materials, 22 (2010) 1223-1227. [41] Y.-K. Lin, H.-W. Ting, C.-Y. Wang, S. Gwo, L.-J. Chou, C.-J. Tsai, L.-J. Chen, Au Nanocrystal Array/Silicon Nanoantennas as Wavelength-Selective Photoswitches, Nano Letters, 13 (2013) 2723-2731. [42] W.J. Cho, Y. Kim, J.K. Kim, Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility, ACS Nano, 6 (2012) 249-255. [43] X. Xu, K. Kim, H. Li, D.L. Fan, Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection, Advanced Materials, 24 (2012) 5457-5463. [44] C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, D. Golberg, Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires, Nano Letters, 8 (2008) 3081-3085. [45] Y.-J. Wu, C.-H. Hsieh, P.-H. Chen, J.-Y. Li, L.-J. Chou, L.-J. Chen, Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires, ACS Nano, 4 (2010) 1393-1398. [46] C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, S. Gwo, Plasmonic Green Nanolaser Based on a Metal-Oxide-Semiconductor Structure, Nano Letters, 11 (2011) 4256-4260. [47] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, Plasmonic Nanolaser Using Epitaxially Grown Silver Film, Science, 337 (2012) 450-453. [48] Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells, Nano Letters, 12 (2012) 440-445. [49] H. Tan, R. Santbergen, A.H.M. Smets, M. Zeman, Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles, Nano Letters, 12 (2012) 4070-4076. [50] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan, Plasmon Resonance Enhanced Multicolour Photodetection by Graphene, Nature Communications, 2 (2012) 579. [51] H. Nakanishi, K.J.M. Bishop, B. Kowalczyk, A. Nitzan, E.A. Weiss, K.V. Tretiakov, M.M. Apodaca, R. Klajn, J.F. Stoddart, B.A. Grzybowski, Photoconductance and Inverse Photoconductance in Films of Functionalized Metal Nanoparticles, Nature, 460 (2009) 371-375. [52] Y.J. Hwang, A. Boukai, P. Yang, High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity, Nano Letters, 9 (2009) 410-415. [53] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Letters, 9 (2009) 1549-1554. [54] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature, 451 (2008). [55] B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, X. Cheng, Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy, Advanced Functional Materials, 18 (2008) 2348-2355. [56] K. Tsujino, M. Matsumura, Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst, Advanced Materials, 17 (2005) 1045-1047. [57] O.J. Hildreth, W. Lin, C.P. Wong, Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures, ACS Nano, 3 (2009) 4033-4042. [58] X. Li, P.W. Bohn, Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon, Applied Physics Letters, 77 (2000) 2572. [59] Z. Huang, H. Fang, J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density, Advanced Materials, 19 (2007) 744-748. [60] C.-Y. Chen, C.-S. Wu, C.-J. Chou, T.-J. Yen, Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature, Advanced Materials, 20 (2008) 3811-3815. [61] K. Peng, A. Lu, R. Zhang, S.-T. Lee, Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching, Advanced Functional Materials, 18 (2008) 3026-3035. [62] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching, The Journal of Physical Chemistry C, 112 (2008) 4444-4450. [63] T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic Observation of Nonradiative Decay of Surface Plasmons in Silver, physical Review B, 24 (1981) 3644-3646. [64] T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic Study of Surface Plasmons in Metals, Applied Optics, 21 (1982) 949-954. [65] M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum Plasmonic Nanoantennas, Nano Letters, 12 (2012) 6000-6004. [66] S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings, ACS Nano, 6 (2012) 6260-6271. [67] Y. Jin, Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine, Advanced Materials, 24 (2012) 5153-5165. [68] H.-W. Ting, Y.-K. Lin, Y.-J. Wu, L.-J. Chou, C.-J. Tsai, L.-J. Chen, Large Area Controllable Hexagonal Close-Packed Single-Crystalline Metal Nanocrystal Arrays with Localized Surface Plasmon Resonance Response, Journal of Materials Chemistry C, 1 (2013) 3593-3599. [69] P.J. Holmes, J.E. Snell, A Vapour Etching Technique for The Photolithography of Silicon Dioxide, Microelectronics Reliability, 5 (1966) 334-341. [70] C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, L.-J. Chen, An Ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters, Nanotechnology, 22 (2011) 055603. [71] Y.-H. Chen, W.-S. Li, C.-Y. Liu, C.-Y. Wang, Y.-C. Chang, L.-J. Chen, Three-Dimensional Heterostructured ZnSe Nanoparticles/Si Wire Arrays with Enhanced Photodetection and Photocatalytic Performances, Journal of Materials Chemistry C, 1 (2013) 1345-1351. [72] K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Guided Three-Dimensional Catalyst Folding during Metal-Assisted Chemical Etching of Silicon, Nano Letters, 11 (2011) 2369-2374. [73] P. Lianto, S. Yu, J. Wu, C.V. Thompsonad, W.K. Choi, Vertical Etching with Isolated Catalysts in Metal-Assisted Chemical Etching of Silicon, Nanoscale, 4 (2012) 7532-7539. [74] R. Chen, D. Li, H. Hu, Y. Zhao, Y. Wang, N. Wong, S. Wang, Y. Zhang, J. Hu, Z. Shen, a.Q. Xiong, Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection, The Journal of Physical Chemistry C, 116 (2012) 4416-4422. [75] S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, Photocurrent Spectroscopy of Optical Absorption Enhancement in Silicon Photodiodes via Scattering from Surface Plasmon Polaritons in Gold Panoparticles, Journal of Applied Physics, 101 (2007) 104309.
|