跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂至中
研究生(外文):Chih-ChungLu
論文名稱:不同內插函數應用於數位影像相關法之準確度研究
論文名稱(外文):Study of the accuracy due to different interpolations in digital image correlation methods
指導教授:朱聖浩
指導教授(外文):Shen-Haw Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:106
中文關鍵詞:數位影像相關法線性插值立方插值有限元素複合材料缺角分介面缺角
外文關鍵詞:digital image correlation methodlinear interpolationcubic interpolationFinite element methodcomposite materialNotchInterface notch
相關次數:
  • 被引用被引用:2
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中利用影像相關的實驗,取得試體受力前和受力後的變位影像資料,再利用數位影像相關法的式子,將計算得到的位移和應變與有限元素分析法所模擬的結果作比較。其中,數位影像相關法較為常做的方法是使用線性 (linear) 的作法,但在本文中我們除了使用線性的方法外,還將會使用立方 (cubic) 的分析方法,並且比較兩種不同的分析方法之間的結果。

在實驗中,我們的複合材料試體主要分為單一材料 (纖維方向分為軸向跟橫向)、兩種材料相接以及在上述各種試體的缺角中填入環氧樹酯等不同種類的試體,而其經由實驗量測後與模擬比較之結果為軸向纖維的單一材料試體最為接近理論解。

This study uses the digital images correlation method to find the specimen displacement. The digital image correlation method often uses the linear interpolation to calculate the result, but this study also uses the cubic interpolation to analyze it. Then the two different interpolation methods are compared to each other in this study, and the displacement fields obtained from experiments are then compared with the finite element results. The comparisons indicate that the two interpolation schemes produce considerably similar displacement fields using the digital image correlation methods, although the cubic interpolation can obtain a little smoother result.
In the experiment, there are three kinds of composite materials which are as follows: axial fiber specimens, two-way fiber specimens, and lateral fiber specimens. Then all specimens were filled epoxy resin into the V-notch, so there are six kinds of composite materials in this experiment. The result of the axial fiber specimens is the closest to the theoretical solution for the comparison of experiment and simulation.

摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Figures vii
List of Tables x
Chapter 1.Introduction 1
1.1 Background and purpose 1
1.2 Literature review 3
1.2.1 Research correlated with the experiment and the cubic interpolation for digital-image-correlation method 3
1.2.2 Research correlated with the numerical method and the experiment for digital-image-correlation method 4
1.2.3 Research correlated with the inclusion corners and numerical methods for a shape notch 7
1.2.4 Research correlated with the composites and the experiment of computer images 7
Chapter 2.The Non-contact Measurement Experiment System 11
2.1 Introduction 11
2.2 Set-up digital camera 11
2.3 Specimens produced 16
2.4 Spray painting 21
2.5 Measurement step 26
2.6 Summary 29
Chapter 3.Linear and cubic interpolations 30
3.1 Introduction 30
3.2 Image correlation method 30
3.3 Linear interpolation 35
3.4 Cubic Hermit-surface interpolation 38
3.5 The image correlation program CCD83 42
3.6 Summary 44
Chapter 4.Comparison between interpolation methods for image correlation methods 45
4.1 Introduction 45
4.2 Theory of experimental comparisons 45
4.3 Axial fiber specimens 48
4.3.1 Details of the specimens 48
4.3.2 Experimental results and comparisons 48
4.4 Two-way fiber specimens 61
4.4.1 Details of the specimens 61
4.4.2 Experimental and comparisons 62
4.5 Lateral fiber specimens 74
4.5.1 Details of the specimens 74
4.5.2 Experimental result and comparisons 74
4.6 Summary 86
Chapter 5.Conclusions and Recommendations 88
5.1 Conclusion 88
5.2 Recommendations for further research 89
References 91
Appendix 97
自述 105
VITA 106


[1] Keys RG, Cubic Convolution Interpolation for Digital Image Processing, IEEE Transactions on Acoustics Speech and Signal Processing 1981; 29:1153-1160.
[2] Ha K, A parametric study of displacement measurements using digital image correlation method, KSME International Journal 2000; 14:518-529.
[3] Li ZC, Yan NN, New error estimates of bi-cubic Hermite finite element methods for biharmonic equations, Journal of Computational and Applied Mathematics 2002; 142:251-285.
[4] Zhang ZF, Kang YL, Wang HW, Qin QH, Qiu Y, Li XQ, A novel coarse-fine search scheme for digital image correlation method, Measurement 2006; 39:710-718.
[5] Lin CC, Shen MH, Chiang HK, Liaw C, High-performance very large scale integration architecture design for various-ratio image scaling, Journal of Electronic Imaging 2008; 17:043010.
[6] Myles A, Karciauskas K, Peters J, Pairs of bi-cubic surface constructions supporting polar connectivity, Computer Aided Geometric Design 2008; 25:621-630.
[7] Pan B, Qian KM, Xie HM, Asundi A, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology 2009; 20:062001.
[8] Mahinfalah M, Zackery L, Photoelastic determination of mixed-mode stress intensity factors for sharp reentrant corners, Engineering Fracture Mechanics 1995; 52:639-645.
[9] Tian WY, Chen YH, A semi-infinite interface crack interacting with subinterface matrix cracks in dissimilar anisotropic materials. I. Fundamental formulations and the J-integral analysis, International Journal of Solids and Structures 2000; 37:7717-7730.
[10] Matsumto T, Tanaka M, Obara R, Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis, Engineering Fracture Mechanics 2000; 65:683-702.
[11] Bjerken C, Persson C, A numerical method for calculating stress intensity factors for interface cracks in biomaterials, Engineering Fracture Mechanics 2001; 68:235-246.
[12] Shin DK, Lee JJ, Fracture parameters of interfacial crack of bimaterial under the impact loading, International Journal of Solids and Structures 2001; 38:5303-5322.
[13] Dolbow JE, Gosz M, On the computation of mixed-mode stress intensity factors in functionally graded materials, International Journal of Solids and Structures 2002; 39:2557-2574.
[14] Xu W, Yao XF, Xu MQ, Jin GC, Yeh HY, Fracture characterizations of V-notch tip in PMMA polymer material, Polymer Testing 2004; 23:509-515.
[15] Lin CS, Lay YL, Ho CW, Lin ACY, Chang NC, A novel experimental device with modified laser shadow spot and optical strain gauge set-up, Measurement 2005; 37:9-19.
[16] Yoneyama S, Morimoto Y, Takashi M, Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation, Strain 2006; 42:21-29.
[17] Yao XF, Yeh HY, Xu W, Fracture investigation at V-notch tip using coherent gradient sensing (CGS), International Journal of Solids and Structures 2006; 43:1189-1200.
[18] Ikeda T, Nagai M, Yamanaga K, Miyazaki N, Stress intensity factor analyses of interface cracks between dissimilar anisotropic materials using the finite element method, Engineering Fracture Mechanics 2006; 73:2067-2079.
[19] Yoneyama S, Ogawa T, Kobayashi Y, Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods, Engineering Fracture Mechanics 2007; 74:1399-1412.
[20] Ayhan AO, Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements, International Journal of Solids and Structures 2007; 44:8579-8599.
[21] Sakaue K, Yoneyama S, Kikuta H, Takashi M, Evaluating crack tip stress field in a thin glass plate under thermal load, Engineering Fracture Mechanics 2008; 75:1015-1026.
[22] Yoneyama S, Sakaue K, Kikuta H, Takashi M, Observation of stress field around an oscillating crack tip in a quenched thin glass plate, Experimental Mechanics 2008; 48:367-374.
[23] Lopez-Crespo P, Burguete RL, Patterson EA, Shterenlikht A, Withers PJ, Yates JR, Study of a Crack at a Fastener Hole by Digital Image Correlation, Experimental Mechanics 2009; 49:551-559.
[24] Vable M, Maddi JR, Boundary element analysis of inclusions with corners, Engineering Analysis with Boundary Elements 2007; 31:762-770.
[25] Chen MC, Ping XC, A novel hybrid finite element analysis of inplane singular elastic field around inclusion corners in elastic media, International Journal of Solids and Structures 2009; 46:2527-2538.
[26] Chen MC, Ping XC, Analysis of the interaction within a rectangular array of rectangular inclusions using a new hybrid finite element method, Engineering Fracture Mechanics 2009; 76:580-593.
[27] Hua Lu, Chiang F.P., Photoelastic study of interfacial fracture of biomaterial, Optics and Lasers in Engineering 1991; 14:217-234.
[28] Ricci V., Shukla A., Singh R.P., Evaluation of fracture mechanics parameters in biomaterial systems using strain gages, Engineering Fracture Mechanics 1997; 58:273-283.
[29] Semenski D., Jecic S., Experimental caustics analysis in fracture mechanics of anisotropic materials, Experimental Mechanics 1999; 39:177-183.
[30] Rhee J., Rowlands R.E., Moire-numerical hybrid analysis of cracks in orthotropic media, Experimental Mechanics 2001; 42:311-317.
[31] Shukla A., Chalivendra V.B., parameswaran V., Lee K.H., Photoelastic investigation of interfacial fracture between orthotropic and isotropic materials, Optical and Lasers in Engineering 2003; 40:307-324.
[32] Yao X., Chen J.D., Jin G.C., Arakawa K., Takahashi K., Caustic analysis of stress singularities in orthotropic composite materials with mode-i crack, Composite Science and Technique 2004; 64:917-924.
[33] Lin K.Y., Tong P., Singular finite elements for the fracture analysis of V-notched plate, International Journal for Numerical Methods in Engineering 1980; 15:1343-1354.
[34] Chen D.A., Stress intensity factors for V-notched strip under tension or in-plane bending, International Journal of Fracture 1995; 70:81-97.
[35] Kondo T., Kobayashi M., Sekine H., Strain gage method for determining stress intensities of sharp-notched strips, Experimental Mechanics 2001; 41:1-7.
[36] Qian Z.Q., On the evaluation of wedge corner stress intensity factors of bi-material joint with surface tractions, Computers and Structures 2001; 58:53-64.
[37] Seweryn A, Modeling of singular stress field using finite element method, International Journal of Solids and Structures 2002; 39:4787-4804.
[38] Chang J.H., Wu D.J., Finite element calculation of elastodynamic stress field around a notch tip via contour integrals, International Journal of Soilds and Structures 2003; 40:1189-1202.
[39] Noda N.A., Takase Y., Generalized stress intensity factors of V-shaped notch in a round bar under torsion, tension and bending, Engineering Fracture Mechanics 2003; 70:1447-1466.
[40] Ju S.H., Liu S.H., Liu K.W., Measurement of stress intensity factors by digital camera, International Journal of Solids and Structures 2006; 43:1009-1022
[41] Ju S.H., Liu S.H., Determining stress intensity factors of composites using crack opening displacement, Composites Structures 2007; 81:614-621.
[42] Ju S.H., Chung H.Y., Jhao B.J., Experimental calculation of mixed-mode notch stress intensity factors for anisotropic materials, Engineering Fracture Mechanics 2009; 76:2260-2271.
[43] Liu S.H., Noncontact image-based measurement techniques and automatic programming using digital camera, Doctoral thesis, Department of Civil Engineering, National Cheng Kung University 2007, Taiwan (R.O.C.).
[44] Jhao B.J., Evaluation of notch stress intensity factors in composite and piezoelectric materials, Doctoral thesis, Department of Civil Engineering, National Cheng Kung University 2009, Taiwan (R.O.C.).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊