[1] S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R. Meldrum, C. N. Lee and C. W. Lin, "Compact optical diagnostic device for isothermal nucleic acids amplification", Sensors and Actuators B-Chemical, 133, 493-501, (2008)
[2] S.-Y. Lee, C.-N. Lee, H. Mark, D. R. Meldrum, C.-K. Lee and C.-W. Lin, "Optimal Hepatitis B Virus Primer Sequence Design for Isothermal Amplification", Biomedical Engineering, Applications, Basis, Communications, 19, 137 - 144, (2007)
[3] S.-Y. Lee, C.-N. Lee, H. Mark, D. R. Meldrum and C.-W. Lin, "Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification", Sensors and Actuators B: Chemical, 127, 598-605, (2007)
[4] M. Koch, N. Harris, A. G. R. Evans, N. M. White and A. Brunnschweiler, "A novel micromachined pump based on thick-film piezoelectric actuation", Sensors and Actuators A: Physical, 70, 98-103, (1998)
[5] S. Böhm, W. Olthuis and P. Bergveld, "A plastic micropump constructed with conventional techniques and materials", Sensors and Actuators A: Physical, 77, 223-228, (1999)
[6] J.-H. Kim, C. J. Kang and Y.-S. Kim, "A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc", Microelectronic Engineering, 71, 119-124, (2004)
[7] H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson and G. Stemme, "A valve-less diffuser micropump for microfluidic analytical systems", Sensors and Actuators B: Chemical, 72, 259-265, (2001)
[8] J. Darabi, M. Rada, M. Ohadi and J. Lawler, "Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump", Journal of Microelectromechanical Systems, 11, 684-690, (2002)
[9] P. Selvaganapathy, E. T. Carlen and C. H. Mastrangelo, "Electrothermally actuated inline microfluidic valve", Sensors and Actuators A: Physical, 104, 275-282, (2003)
[10] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, "Ultrasonic micromixer for microfluidic systems", Sensors and Actuators A: Physical, 93, 266-272, (2001)
[11] A. D. Stroock, S. K. W. Derringer, A. Ajdari, I. Mezi, H. A. Stone and G. M. Whitesides, "Chaotic Mixer for Microchannels", Science, 295, 647, (2002)
[12] S. Takeuchi and I. Shimoyama, "A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording", Journal of Microelectromechanical Systems, 9, 24-31, (2000)
[13] Y. Zhu, M. H. Shi, X. D. Wu and S. R. Yang, "Amphiphilic copolymer grafted "smart surface" enhanced by surface roughness", Journal of Colloid and Interface Science, 315, 580-587, (2007)
[14] Y. Zhu, L. Feng, F. Xia, J. Zhai, M. X. Wan and L. Jiang, "Chemical dual-responsive wettability of superhydrophobic PANI-PAN coaxial nanofibers", Macromolecular Rapid Communications, 28, 1135-1141, (2007)
[15] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang and D. Zhu, "Reversible Switching between Superhydrophilicity and Superhydrophobicity", Angewandte Chemie International Edition, 43, 357-360, (2004)
[16] L. Wang, Y. Lin, B. Peng and Z. Su, "Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers", Chemical Communications, 5972-5974, (2008)
[17] F. Xia, H. Ge, Y. Hou, T. L. Sun, L. Chen, G. Z. Zhang and L. Jiang, "Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity", Advanced Materials, 19, 2520-2524, (2007)
[18] E. Balaur, J. M. Macak, L. Taveira and P. Schmuki, "Tailoring the wettability of TiO2 nanotube layers", Electrochemistry Communications, 7, 1066-1070, (2005)
[19] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey and S. T. Picraux, "Lotus Effect Amplifies Light-Induced Contact Angle Switching", The Journal of Physical Chemistry B, 108, 12640-12642, (2004)
[20] A. Chunder, K. Etcheverry, G. Londe, H. J. Cho and L. Zhai, "Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control", Colloids and Surfaces a-Physicochemical and Engineering Aspects, 333, 187-193, (2009)
[21] G. Takei, M. Nonogi, A. Hibara, T. Kitamori and H. B. Kim, "Tuning microchannel wettability and fabrication of multiple-step Laplace valves", Lab on a Chip, 7, 596-602, (2007)
[22] X. Liu and N. L. Abbott, "Electrochemical Generation of Gradients in Surfactant Concentration Across Microfluidic Channels", Analytical Chemistry, 81, 772-781, (2009)
[23] D. L. Huber, R. P. Manginell, M. A. Samara, B.-I. Kim and B. C. Bunker, "Programmed Adsorption and Release of Proteins in a Microfluidic Device", Science, 301, 352, (2003)
[24] B. S. Gallardo and N. L. Abbott, "Active Control of Interfacial Properties: A Comparison of Dimeric and Monomeric Ferrocenyl Surfactants at the Surface of Aqueous Solutions", Langmuir, 13, 203-208, (1997)
[25] B. S. Gallardo, K. L. Metcalfe and N. L. Abbott, "Ferrocenyl Surfactants at the Surface of Water: Principles for Active Control of Interfacial Properties", Langmuir, 12, 4116-4124, (1996)
[26] H. Sakai, H. Imamura, Y. Kondo, N. Yoshino and M. Abe, "Reversible control of vesicle formation using electrochemical reaction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232, 221-228, (2004)
[27] B. Kazakeviciene, G. Valincius, G. Niaura, Z. Talaikyte, M. Kazemekaite, V. Razumas, D. Plausinaitis, A. Teiserskiene and V. Lisauskas, "Mediated oxidation of ascorbic acid on a homologous series of ferrocene-terminated self-assembled monolayers", Langmuir, 23, 4965-4971, (2007)
[28] G. Valincius, G. Niaura, B. Kazakeviciene, Z. Talaikyte, M. Kazemekaite, E. Butkus and V. Razumas, "Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers", Langmuir, 20, 6631-6638, (2004)
[29] R. C. Chambers, C. E. Inman and J. E. Hutchison, "Electrochemical detection of nanoscale phase separation in binary self-assembled monolayers", Langmuir, 21, 4615-4621, (2005)
[30] J. A. M. Sondag-Huethorst and L. G. J. Fokkink, "Potential-Dependent Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Monolayers on Gold", Langmuir, 10, 4380-4387, (1994)
[31] W. Wang and R. W. Murray, "Electrochemistry and contact angles of an ionic liquid sessile droplet on films of monolayer-protected au nanoparticles", Analytical Chemistry, 79, 1213-1220, (2007)
[32] B. L. Ramos, G. Nagy and S. J. Choquette, "Electrochemical modulation of a waveguide interferometer", Electroanalysis, 12, 140-146, (2000)
[33] L. Y. S. Lee, T. C. Sutherland, S. Rucareanu and R. B. Lennox, "Ferrocenylalkylthiolates as a probe of heterogeneity in binary self-assembled monolayers on gold", Langmuir, 22, 4438-4444, (2006)
[34] A. S. Viana, A. H. Jones, L. M. Abrantes and M. Kalaji, "Redox induced orientational changes in a series of short chain ferrocenyl alkyl thiols self-assembled on gold(111) electrodes", Journal of Electroanalytical Chemistry, 500, 290-298, (2001)
[35] X. Yao, J. X. Wang, F. M. Zhou, J. Wang and N. J. Tao, "Quantification of redox-induced thickness changes of 11-ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance", Journal of Physical Chemistry B, 108, 7206-7212, (2004)
[36] X. Yao, M. L. Yang, Y. F. Wang and Z. B. Hu, "Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance", Sensors and Actuators B-Chemical, 122, 351-356, (2007)
[37] S. Ye, T. Haba, Y. Sato, K. Shimazu and K. Uosaki, "Coverage dependent behavior of redox reaction induced structure change and mass transport at an 11-ferrocenyl-1-undecanethiol self-assembled monolayer on a gold electrode studied by an in situ IRRAS-EQCM combined system", Physical Chemistry Chemical Physics, 1, 3653-3659, (1999)
[38] A. J. Wain, H. N. L. Do, H. S. Mandal, H. B. Kraatz and F. M. Zhou, "Influence of molecular dipole moment on the redox-induced reorganization of alpha-helical peptide self-assembled monolayers: An electrochemical SPR investigation", Journal of Physical Chemistry C, 112, 14513-14519, (2008)
[39] E. Kim, K. Kim, H. Yang, Y. T. Kim and J. Kwak, "Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer", Analytical Chemistry, 75, 5665-5672, (2003)
[40] R. A. Wassel, G. M. Credo, R. R. Fuierer, D. L. Feldheim and C. B. Gorman, "Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction", Journal of the American Chemical Society, 126, 295-300, (2004)
[41] Y. Ishige, M. Shimoda and M. Kamahori, "Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode", Biosensors and Bioelectronics, 24, 1096-1102, (2009)
[42] H. Visser, A. E. Curtright, J. K. McCusker and K. Sauer, "Attenuated Total Reflection Design for in Situ FT-IR Spectroelectrochemical Studies", Analytical Chemistry, 73, 4374-4378, (2001)
[43] J. O. Enlow, H. Jiang, J. T. Grant, K. Eyink, W. Su and T. J. Bunning, "Plasma polymerized ferrocene films", Polymer, 49, 4042-4045, (2008)
[44] Y. Sato, B. L. Frey, R. M. Corn and K. Uosaki, "Polarization Modulation Fourier Transform Infrared Studies of the Effects of Self-Assembly Time on the Order and Orientation of 11-Ferrocenyl-1-undecanethiol Monolayers on Gold", Bulletin of the Chemical Society of Japan, 67, 21-25, (1994)
[45] T. Matsuura and Y. Shimoyama, "Growth kinetics of self-assembled monolayers of thiophene and terthiophene on Au(111): An infrared spectroscopic study", The European Physical Journal E: Soft Matter and Biological Physics, 7, 233-240, (2002)
[46] S. Ye, Y. Sato and K. Uosaki, "Redox-Induced Orientation Change of a Self-Assembled Monolayer of 11-Ferrocenyl-1-undecanethiol on a Gold Electrode Studied by in Situ FT-IRRAS", Langmuir, 13, 3157-3161, (1997)
[47] L. S. Wang, L. Flanagan and A. P. Lee, "Side-wall vertical electrodes for lateral field microfluidic applications", Journal of Microelectromechanical Systems, 16, 454-461, (2007)
[48] D. Kohlheyer, S. Unnikrishnan, G. A. J. Besselink, S. Schlautmann and R. B. M. Schasfoort, "A microfluidic device for array patterning by perpendicular electrokinetic focusing", Microfluidics and Nanofluidics, 4, 557-564, (2008)
[49] R. Aoki, M. Yamada, M. Yasuda and M. Seki, "In-channel focusing of flowing microparticles utilizing hydrodynamic filtration", Microfluidics and Nanofluidics, 6, 571-576, (2009)
[50] Y. Ayato, A. Takatsu, K. Kato and N. Matsuda, "Identification of adsorption states of heptyl viologen cation radicals in a thin deposition layer by slab optical waveguide spectroscopy utilizing indium-tin-oxide electrodes", Journal of Electroanalytical Chemistry, 595, 87-93, (2006)
[51] A. K. Sheridan, P. Ngamukot, P. N. Bartlett and J. S. Wilkinson, "Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers", Sensors and Actuators B-Chemical, 117, 253-260, (2006)
[52] K. Fukuda and H. Ohno, "Electron transfer reaction of cytochrome c at the electrode surface analyzed with noncontact optical waveguide spectroscopy", Electroanalysis, 14, 605-610, (2002)
[53] J. C. Abanulo, R. D. Harris, P. N. Bartlett and J. S. Wilkinson, "Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions", Applied Optics, 40, 6242-6245, (2001)
[54] J. C. Abanulo, R. D. Harris, A. K. Sheridan, J. S. Wilkinson and P. N. Bartlett, "Waveguide surface plasmon resonance studies of surface reactions on gold electrodes", Faraday Discussions, 121, 139-152, (2002)
[55] D. R. Dunphy, S. B. Mendes, S. S. Saavedra and N. R. Armstrong, "The electroactive integrated optical waveguide: Ultrasensitive spectroelectrochemistry of submonolayer adsorbates", Analytical Chemistry, 69, 3086-3094, (1997)
[56] S. E. Ross, Y. N. Shi, C. J. Seliskar and W. R. Heineman, "Spectroelectrochemical sensing: planar waveguides", Electrochimica Acta, 48, 3313-3323, (2003)
[57] N. Zhang, R. Schweiss, Y. Zong and W. Knoll, "Electrochemical surface plasmon spectroscopy - Recent developments and applications", Electrochimica Acta, 52, 2869-2875, (2007)
[58] F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes", Biosensors & Bioelectronics, 20, 633-642, (2004)
[59] J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin and C. W. Lin, "A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection", Biosensors & Bioelectronics, 22, 519-525, (2006)
[60] T. S. Hug, J. E. Prenosil and M. Morbidelli, "Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state", Biosensors & Bioelectronics, 16, 865-874, (2001)
[61] Z. Salamon, H. A. Macleod and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .2. Applications to biological systems", Biochimica Et Biophysica Acta-Reviews on Biomembranes, 1331, 131-152, (1997)
[62] 李政隆, "摻鍺二氧化矽光波導表面電漿共振生物感測晶片之研發", 國立台灣大學醫學工程學研究所, 碩士論文, 1994/06[63] S. Chah, J. Yi, C. M. Pettit, D. Roy and J. H. Fendler, "Ionization and reprotonation of self-assembled mercaptopropionic acid monolayers investigated by surface plasmon resonance measurements", Langmuir, 18, 314-318, (2002)