跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃振剛
研究生(外文):Jhen-Gang Huang
論文名稱:功能性奈米薄膜於生醫微感測之研究
論文名稱(外文):Research of functionalized nano thin-film inmicro- biosensing system
指導教授:林啟萬林啟萬引用關係
指導教授(外文):Chii- Wann Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:69
中文關鍵詞:二茂鐵自我組裝層智慧型元件微型化系統
外文關鍵詞:ferroceneSAMsmart deviceminiaturized system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由結合ferrocene硫醇分子之操控與智慧結構(smart structure)之概念,建構一套適用於生醫系統之微型元件開發方案。雖然智慧型材料具有製備簡便與提升元件效能等特色,然則其操縱原理多會造成生物分子之破壞而不適於生醫感測元件之開發。考量至此,吾人利用ferrocene分子之氧化活性,藉由電化學操控方式使之呈現雙性分子(amphiphlic)之特色,以達到操控元件效能之目標。對ferrocene分子之自我組裝層性能之探究上發現,利用短碳鏈分子之摻雜效應可擾亂ferrocene硫醇分子之排列,進而提升自我組裝層性質之變化範圍。而將ferrocenyl SAM結合於微流元件時,亦驗證藉由氧化ferrocenyl SAM方式,可調變微流道介面親水性,從而完成將流道內液體匯流比例控制於50%至70%之範疇。
於光波導元件之開發上,研究中先針對波導結構設計做探討。並藉由與硝酸纖維薄膜之整合,開發完成一具備流體輸送功能之簡易式之分析套組。另外,將ferrocenyl SAM製備於波導感測元件時,亦驗證ferrocenyl SAM之氧化可造成SPR共振波長偏移 2 nm,若將SAM摻雜C4分子時,其共振波長之偏移更可到達6 nm。當進一步利用ferrocenyl SAM之氧化對SPR訊號之調變效果結合至多感測區之波導感測元件時,亦可發現藉由ferrocenyl SAM之氧化可對個別SPR感測區之訊號稍為區隔。本研究開發完成一套借電活性分子達成微型元件開發之方案,未來將設法提升流體操縱與SPR訊號調變幅度等效能,以期足能應用至可攜式生醫元件或光電元件等商業應用,以裨益社會。
In this study, a microdevice development strategy, for which integrate the manipulation of ferrocenyl alkanethiols characteristics and idea of smart structures was investigated. The smart devices posed advantages of easy preparation and improve the device performance. However the stimuli principles of these materials might damage biomolecules and not suitable for biomedical devices development. In this study the ferrocenyl alkanethiols, for which the amphilphlic characteristics could be manipulated by electrochemical methods, was utilized for the device control. From the characterization of ferrocenyl alkanethiols, it was found doping of molecules with shorter chain length would disturbe the SAM organization, which provided more variant range. For a microfluidic device for which integrated with ferrocenyl SAM, it was proposed with interfacial hydrophilicity could be altered by oxidation of ferrocenyl SAM, which caused the fluidic infusion ratio of 50%~ 70% in converge channel.
In the development of optical waveguide device, the influence of structure design in waveguide was first evaluated, after that a point-of-care kit which integrated with waveguide sensor with nitrocellulose strip for fluidic transportation was proposed. In addition, as the ferrocenyl SAM was integrated with waveguide SPR sensor, it was demonstrated that oxidation of ferrocenyl SAM would cause 2 nm shift in SPR resonance wavelength, if the SAM was doped with C4, shift magnitude of 6 nm can be achieved moreover. As the ferrocenyl SAM was integrated with SPR waveguide sensor with serial aligned multi- sensing areas. It was found the SPR signal on each sensing area might be slightly distinguished by oxidation of ferrocenyl SAM. In this study a microdevices development strategy which based on redox- active smart materials was proposed. The device performances such as fluidic manipulation efficiency and SPR signal modulation magnitude would then be improved in the future. The author wishes the research results presented can be beneficial for the development of medical and optoelectronic devices in the future.
致謝 I
中文摘要 II
Abstract III
Contents V
Graphics index VII
Tables index IX
Chapter 1. Background 1
1.1 Introduction of microdevices in biomedical applications 1
1.2 Applications of smart materials in micro/ nano sciences 3
1.2.1 SMA based Neuron recording electrodes 3
1.2.2 Interfacial hydrophilicity treatment 4
1.2.3 Applications of smart materials in microfluidic devices or surface treatment 8
1.3 Motivation 9
Chapter 2. Characterization of ferrocenyl SAM 13
2.1 Preparation of self assembled monolayer on electrodes 14
2.2 Electrochemical properties of hybrid SAMs 15
2.3 Interfacial hydrophilicity analysis of hybrid SAMs 18
2.4 Influence of chain lengths to hybrid SAMs characteristics 20
2.5 Mechanisms of alternate interfacial characteristics by redox of ferrocenyl SAM 22
2.5.1 Contact angle analysis of various SAMs following redox reaction 22
2.5.2 FTIR analysis of ferrocenyl SAMs 26
2.6 Short summary 29
Chapter 3. Fluidic regulation by ferrocenyl SAM 32
3.1 Microchip fabrication 32
3.2 System setup 34
3.2.1 Immobilization of ferrocenyl SAM 34
3.2.2 Measurement system 34
3.3 Evaluation of fluidic transport in microchannel 36
Chapter 4. Application of ferrocenyl SAM to SPR signal modulation on waveguide sensor 39
4.1 Principles of surface Plasmon resonance 39
4.2 Experimental setup 40
4.2.1 Fabrication of waveguide chip 40
4.2.2 System setup 42
4.3 Influence of waveguide structure to spectral characteristics 43
4.3.1 Design of curvature structure 43
4.3.2 Relationship between sensing area length and signal response 45
4.4 Simplified sample transportation via nitrocellulose strip 46
4.5 Alternation of SPR characteristics with ferrocenyl SAM 48
4.5.1 Introduction 48
4.5.2 Preparation of self-assembled monolayer 49
4.5.3 Measurement of SPR signal on waveguide chip followed by oxidation of SAM 49
4.5.4 Electrochemical characteristics of ferrocenyl SAM 50
4.5.5 Effect of ferrocenyl SAM oxidation state on SPR signal 51
4.5.6 Simulations of the refractive indices of SAM 55
4.5.7 Short Summary 57
4.6 Development of biosensor based on ferrocenyl SAM modulated waveguide chip 57
4.6.1 Concept of ferrocenyl SAM modulated multi- sensing area waveguide sensor 58
4.6.2 Immunoassay on the ferrocenyl SAM modulated multi- sensing area waveguide SPR sensor 59
4.6.3 Summary 60
Chapter 5. Conclusion and future work 62
5.1 Discussion 62
5.2 Future work for microfluidic devices development 62
5.3 Future work for ferrocenyl modulated waveguide sensor 63
Chapter 6. References 64
[1] S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R. Meldrum, C. N. Lee and C. W. Lin, "Compact optical diagnostic device for isothermal nucleic acids amplification", Sensors and Actuators B-Chemical, 133, 493-501, (2008)
[2] S.-Y. Lee, C.-N. Lee, H. Mark, D. R. Meldrum, C.-K. Lee and C.-W. Lin, "Optimal Hepatitis B Virus Primer Sequence Design for Isothermal Amplification", Biomedical Engineering, Applications, Basis, Communications, 19, 137 - 144, (2007)
[3] S.-Y. Lee, C.-N. Lee, H. Mark, D. R. Meldrum and C.-W. Lin, "Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification", Sensors and Actuators B: Chemical, 127, 598-605, (2007)
[4] M. Koch, N. Harris, A. G. R. Evans, N. M. White and A. Brunnschweiler, "A novel micromachined pump based on thick-film piezoelectric actuation", Sensors and Actuators A: Physical, 70, 98-103, (1998)
[5] S. Böhm, W. Olthuis and P. Bergveld, "A plastic micropump constructed with conventional techniques and materials", Sensors and Actuators A: Physical, 77, 223-228, (1999)
[6] J.-H. Kim, C. J. Kang and Y.-S. Kim, "A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc", Microelectronic Engineering, 71, 119-124, (2004)
[7] H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson and G. Stemme, "A valve-less diffuser micropump for microfluidic analytical systems", Sensors and Actuators B: Chemical, 72, 259-265, (2001)
[8] J. Darabi, M. Rada, M. Ohadi and J. Lawler, "Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump", Journal of Microelectromechanical Systems, 11, 684-690, (2002)
[9] P. Selvaganapathy, E. T. Carlen and C. H. Mastrangelo, "Electrothermally actuated inline microfluidic valve", Sensors and Actuators A: Physical, 104, 275-282, (2003)
[10] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, "Ultrasonic micromixer for microfluidic systems", Sensors and Actuators A: Physical, 93, 266-272, (2001)
[11] A. D. Stroock, S. K. W. Derringer, A. Ajdari, I. Mezi, H. A. Stone and G. M. Whitesides, "Chaotic Mixer for Microchannels", Science, 295, 647, (2002)
[12] S. Takeuchi and I. Shimoyama, "A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording", Journal of Microelectromechanical Systems, 9, 24-31, (2000)
[13] Y. Zhu, M. H. Shi, X. D. Wu and S. R. Yang, "Amphiphilic copolymer grafted "smart surface" enhanced by surface roughness", Journal of Colloid and Interface Science, 315, 580-587, (2007)
[14] Y. Zhu, L. Feng, F. Xia, J. Zhai, M. X. Wan and L. Jiang, "Chemical dual-responsive wettability of superhydrophobic PANI-PAN coaxial nanofibers", Macromolecular Rapid Communications, 28, 1135-1141, (2007)
[15] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang and D. Zhu, "Reversible Switching between Superhydrophilicity and Superhydrophobicity", Angewandte Chemie International Edition, 43, 357-360, (2004)
[16] L. Wang, Y. Lin, B. Peng and Z. Su, "Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers", Chemical Communications, 5972-5974, (2008)
[17] F. Xia, H. Ge, Y. Hou, T. L. Sun, L. Chen, G. Z. Zhang and L. Jiang, "Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity", Advanced Materials, 19, 2520-2524, (2007)
[18] E. Balaur, J. M. Macak, L. Taveira and P. Schmuki, "Tailoring the wettability of TiO2 nanotube layers", Electrochemistry Communications, 7, 1066-1070, (2005)
[19] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey and S. T. Picraux, "Lotus Effect Amplifies Light-Induced Contact Angle Switching", The Journal of Physical Chemistry B, 108, 12640-12642, (2004)
[20] A. Chunder, K. Etcheverry, G. Londe, H. J. Cho and L. Zhai, "Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control", Colloids and Surfaces a-Physicochemical and Engineering Aspects, 333, 187-193, (2009)
[21] G. Takei, M. Nonogi, A. Hibara, T. Kitamori and H. B. Kim, "Tuning microchannel wettability and fabrication of multiple-step Laplace valves", Lab on a Chip, 7, 596-602, (2007)
[22] X. Liu and N. L. Abbott, "Electrochemical Generation of Gradients in Surfactant Concentration Across Microfluidic Channels", Analytical Chemistry, 81, 772-781, (2009)
[23] D. L. Huber, R. P. Manginell, M. A. Samara, B.-I. Kim and B. C. Bunker, "Programmed Adsorption and Release of Proteins in a Microfluidic Device", Science, 301, 352, (2003)
[24] B. S. Gallardo and N. L. Abbott, "Active Control of Interfacial Properties: A Comparison of Dimeric and Monomeric Ferrocenyl Surfactants at the Surface of Aqueous Solutions", Langmuir, 13, 203-208, (1997)
[25] B. S. Gallardo, K. L. Metcalfe and N. L. Abbott, "Ferrocenyl Surfactants at the Surface of Water: Principles for Active Control of Interfacial Properties", Langmuir, 12, 4116-4124, (1996)
[26] H. Sakai, H. Imamura, Y. Kondo, N. Yoshino and M. Abe, "Reversible control of vesicle formation using electrochemical reaction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232, 221-228, (2004)
[27] B. Kazakeviciene, G. Valincius, G. Niaura, Z. Talaikyte, M. Kazemekaite, V. Razumas, D. Plausinaitis, A. Teiserskiene and V. Lisauskas, "Mediated oxidation of ascorbic acid on a homologous series of ferrocene-terminated self-assembled monolayers", Langmuir, 23, 4965-4971, (2007)
[28] G. Valincius, G. Niaura, B. Kazakeviciene, Z. Talaikyte, M. Kazemekaite, E. Butkus and V. Razumas, "Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers", Langmuir, 20, 6631-6638, (2004)
[29] R. C. Chambers, C. E. Inman and J. E. Hutchison, "Electrochemical detection of nanoscale phase separation in binary self-assembled monolayers", Langmuir, 21, 4615-4621, (2005)
[30] J. A. M. Sondag-Huethorst and L. G. J. Fokkink, "Potential-Dependent Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Monolayers on Gold", Langmuir, 10, 4380-4387, (1994)
[31] W. Wang and R. W. Murray, "Electrochemistry and contact angles of an ionic liquid sessile droplet on films of monolayer-protected au nanoparticles", Analytical Chemistry, 79, 1213-1220, (2007)
[32] B. L. Ramos, G. Nagy and S. J. Choquette, "Electrochemical modulation of a waveguide interferometer", Electroanalysis, 12, 140-146, (2000)
[33] L. Y. S. Lee, T. C. Sutherland, S. Rucareanu and R. B. Lennox, "Ferrocenylalkylthiolates as a probe of heterogeneity in binary self-assembled monolayers on gold", Langmuir, 22, 4438-4444, (2006)
[34] A. S. Viana, A. H. Jones, L. M. Abrantes and M. Kalaji, "Redox induced orientational changes in a series of short chain ferrocenyl alkyl thiols self-assembled on gold(111) electrodes", Journal of Electroanalytical Chemistry, 500, 290-298, (2001)
[35] X. Yao, J. X. Wang, F. M. Zhou, J. Wang and N. J. Tao, "Quantification of redox-induced thickness changes of 11-ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance", Journal of Physical Chemistry B, 108, 7206-7212, (2004)
[36] X. Yao, M. L. Yang, Y. F. Wang and Z. B. Hu, "Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance", Sensors and Actuators B-Chemical, 122, 351-356, (2007)
[37] S. Ye, T. Haba, Y. Sato, K. Shimazu and K. Uosaki, "Coverage dependent behavior of redox reaction induced structure change and mass transport at an 11-ferrocenyl-1-undecanethiol self-assembled monolayer on a gold electrode studied by an in situ IRRAS-EQCM combined system", Physical Chemistry Chemical Physics, 1, 3653-3659, (1999)
[38] A. J. Wain, H. N. L. Do, H. S. Mandal, H. B. Kraatz and F. M. Zhou, "Influence of molecular dipole moment on the redox-induced reorganization of alpha-helical peptide self-assembled monolayers: An electrochemical SPR investigation", Journal of Physical Chemistry C, 112, 14513-14519, (2008)
[39] E. Kim, K. Kim, H. Yang, Y. T. Kim and J. Kwak, "Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer", Analytical Chemistry, 75, 5665-5672, (2003)
[40] R. A. Wassel, G. M. Credo, R. R. Fuierer, D. L. Feldheim and C. B. Gorman, "Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction", Journal of the American Chemical Society, 126, 295-300, (2004)
[41] Y. Ishige, M. Shimoda and M. Kamahori, "Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode", Biosensors and Bioelectronics, 24, 1096-1102, (2009)
[42] H. Visser, A. E. Curtright, J. K. McCusker and K. Sauer, "Attenuated Total Reflection Design for in Situ FT-IR Spectroelectrochemical Studies", Analytical Chemistry, 73, 4374-4378, (2001)
[43] J. O. Enlow, H. Jiang, J. T. Grant, K. Eyink, W. Su and T. J. Bunning, "Plasma polymerized ferrocene films", Polymer, 49, 4042-4045, (2008)
[44] Y. Sato, B. L. Frey, R. M. Corn and K. Uosaki, "Polarization Modulation Fourier Transform Infrared Studies of the Effects of Self-Assembly Time on the Order and Orientation of 11-Ferrocenyl-1-undecanethiol Monolayers on Gold", Bulletin of the Chemical Society of Japan, 67, 21-25, (1994)
[45] T. Matsuura and Y. Shimoyama, "Growth kinetics of self-assembled monolayers of thiophene and terthiophene on Au(111): An infrared spectroscopic study", The European Physical Journal E: Soft Matter and Biological Physics, 7, 233-240, (2002)
[46] S. Ye, Y. Sato and K. Uosaki, "Redox-Induced Orientation Change of a Self-Assembled Monolayer of 11-Ferrocenyl-1-undecanethiol on a Gold Electrode Studied by in Situ FT-IRRAS", Langmuir, 13, 3157-3161, (1997)
[47] L. S. Wang, L. Flanagan and A. P. Lee, "Side-wall vertical electrodes for lateral field microfluidic applications", Journal of Microelectromechanical Systems, 16, 454-461, (2007)
[48] D. Kohlheyer, S. Unnikrishnan, G. A. J. Besselink, S. Schlautmann and R. B. M. Schasfoort, "A microfluidic device for array patterning by perpendicular electrokinetic focusing", Microfluidics and Nanofluidics, 4, 557-564, (2008)
[49] R. Aoki, M. Yamada, M. Yasuda and M. Seki, "In-channel focusing of flowing microparticles utilizing hydrodynamic filtration", Microfluidics and Nanofluidics, 6, 571-576, (2009)
[50] Y. Ayato, A. Takatsu, K. Kato and N. Matsuda, "Identification of adsorption states of heptyl viologen cation radicals in a thin deposition layer by slab optical waveguide spectroscopy utilizing indium-tin-oxide electrodes", Journal of Electroanalytical Chemistry, 595, 87-93, (2006)
[51] A. K. Sheridan, P. Ngamukot, P. N. Bartlett and J. S. Wilkinson, "Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers", Sensors and Actuators B-Chemical, 117, 253-260, (2006)
[52] K. Fukuda and H. Ohno, "Electron transfer reaction of cytochrome c at the electrode surface analyzed with noncontact optical waveguide spectroscopy", Electroanalysis, 14, 605-610, (2002)
[53] J. C. Abanulo, R. D. Harris, P. N. Bartlett and J. S. Wilkinson, "Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions", Applied Optics, 40, 6242-6245, (2001)
[54] J. C. Abanulo, R. D. Harris, A. K. Sheridan, J. S. Wilkinson and P. N. Bartlett, "Waveguide surface plasmon resonance studies of surface reactions on gold electrodes", Faraday Discussions, 121, 139-152, (2002)
[55] D. R. Dunphy, S. B. Mendes, S. S. Saavedra and N. R. Armstrong, "The electroactive integrated optical waveguide: Ultrasensitive spectroelectrochemistry of submonolayer adsorbates", Analytical Chemistry, 69, 3086-3094, (1997)
[56] S. E. Ross, Y. N. Shi, C. J. Seliskar and W. R. Heineman, "Spectroelectrochemical sensing: planar waveguides", Electrochimica Acta, 48, 3313-3323, (2003)
[57] N. Zhang, R. Schweiss, Y. Zong and W. Knoll, "Electrochemical surface plasmon spectroscopy - Recent developments and applications", Electrochimica Acta, 52, 2869-2875, (2007)
[58] F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes", Biosensors & Bioelectronics, 20, 633-642, (2004)
[59] J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin and C. W. Lin, "A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection", Biosensors & Bioelectronics, 22, 519-525, (2006)
[60] T. S. Hug, J. E. Prenosil and M. Morbidelli, "Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state", Biosensors & Bioelectronics, 16, 865-874, (2001)
[61] Z. Salamon, H. A. Macleod and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .2. Applications to biological systems", Biochimica Et Biophysica Acta-Reviews on Biomembranes, 1331, 131-152, (1997)
[62] 李政隆, "摻鍺二氧化矽光波導表面電漿共振生物感測晶片之研發", 國立台灣大學醫學工程學研究所, 碩士論文, 1994/06
[63] S. Chah, J. Yi, C. M. Pettit, D. Roy and J. H. Fendler, "Ionization and reprotonation of self-assembled mercaptopropionic acid monolayers investigated by surface plasmon resonance measurements", Langmuir, 18, 314-318, (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top