[1] J. P. Reifenberg, D. L. Kencke, and K. E. Goodson, “The impact of thermal boundary resistance in phase-change memory devices,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1112–1114, 2008.
[2] T. Paskova, D. A. Hanser, and K. R. Evans, "GaN Substrates for III-Nitride Devices," Proceedings of the IEEE, vol. 98, pp. 1324-1338, 2010.
[3] T. Beechem, A. Christensen, S. Graham, and D. Green, "Micro-Raman thermometry in the presence of complex stresses in GaN devices," Journal of Applied Physics, vol. 103, pp. 124501-8, 2008.
[4] J. Bodzenta, B. Burak, A. Jagoda, and B. Stanczyk, "Thermal conductivity of AlN and AlN-GaN thin films deposited on Si and GaAs substrates," Diamond and Related Materials, vol. 14, pp. 1169-1174, 2005.
[5] T. Borca-Tasciuc and G. Chen, "Experimental Techniques for Thin-Film Thermal Conductivity Characterization," in Thermal Conductivity, pp. 205-237, 2004.
[6] D. G. Cahill, "Thermal Conductivity Measurements from 30K-750K: The 3 Omega Method," Rev. Sci. Instrum., vol. 61, p. 802~808, 1990.
[7] S. M. Lee and D. G. Cahill, "Heat Transport in Thin Dielectric Films," J. Appl. Phys. , vol. 81, pp. 2590-2595, 1997.
[8] T. Borca-Tasciuc, A. R. Kumar, and G. Chen, "Data reduction in 3 omega method for thin-film thermal conductivity determination," Review of Scientific Instruments, vol. 72, pp. 2139-2147, 2001.
[9] L. Lu, W. Yi, and D. L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Review of Scientific Instruments, vol. 72, pp. 2996-3003, 2001
[10] F. Chen, J. Shulman, Y. Xue, C. W. Chu, and G. S. Nolas, "Thermal conductivity measurement under hydrostatic pressure using the 3 omega method," Review of Scientific Instruments, vol. 75, pp. 4578-4584, 2004.
[11] B. W. Olson, S. Graham, and K. Chen, "A practical extension of the 3 omega method to multilayer structures," Review of Scientific Instruments, vol. 76, pp. 053901-7, 2005.
[12] C. Dames and G. Chen, "1 omega, 2 omega, and 3 omega methods for measurements of thermal properties," Review of Scientific Instruments, vol. 76, pp. 124902-14, 2005.
[13] Z. Chen, J. Yang, P. Zhuang, M. Chen, J. Zhu, and Y. Chen, "Thermal conductivity measurement of InGaAs/InGaAsP superlattice thin films," Chinese Science Bulletin, vol. 51, pp. 2931-2936, 2006.
[14] H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-k. Cheong, "Thermal conductivity of phase-change material Ge[sub 2]Sb[sub 2]Te[sub 5]," Applied Physics Letters, vol. 89, pp. 151904-3, 2006.
[15] D.-W. Oh, A. Jain, J. K. Eaton, K. E. Goodson, and J. S. Lee, "Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3[omega] method," International Journal of Heat and Fluid Flow, vol. 29, pp. 1456-1461, 2008.
[16] J. Alvarez-Quintana and J. Rodriguez-Viejo, "Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates," Journal of Applied Physics, vol. 104, pp. 074903-4, 2008.
[17] S.-M. Lee, "Thermal conductivity measurement of fluids using the 3 omega method," Review of Scientific Instruments, vol. 80, pp. 024901-7, 2009.
[18] Y. C. Tae and et al., "Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method," Nanotechnology, vol. 20, p. 315706, 2009.
[19] H.-F. Lee, B. Samuel, and M. Haque, "In-plane thermal conductance measurement of one-dimensional nanostructures," Journal of Thermal Analysis and Calorimetry, vol. 99, pp. 495-500, 2010.
[20] B. Revaz, B. L. Zink, and F. Hellman, "Si-N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films," Thermochimica Acta, vol. 432, pp. 158-168, 2005.
[21] N. Stojanovic, Y. Jongsin, E. B. K. Washington, J. M. Berg, M. W. Holtz, and H. Temkin, "Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis," Microelectromechanical Systems, Journal of, vol. 16, pp. 1269-1275, 2007.
[22] D. R. Queen and F. Hellman, "Thin film nanocalorimeter for heat capacity measurements of 30 nm films," Review of Scientific Instruments, vol. 80, pp. 063901-7, 2009.
[23] N. Markocsan, P. Nyl?聲, J. Wigren, and X. Li, "Low Thermal Conductivity Coatings for Gas Turbine Applications," Journal of Thermal Spray Technology, vol. 16, pp. 498-505, 2007.
[24] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson, "Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays," Journal of Heat Transfer, vol. 130, pp. 052401-9, 2008.
[25] 施智超,方偉權,呂明生,魏百駿,林麗瓊, "薄膜熱傳導特性應用分析技術介紹," 工業材料, 頁144-149, 2008.[26] A. J. Schmidt, R. Cheaito, and M. Chiesa, "A frequency-domain thermoreflectance method for the characterization of thermal properties," Review of Scientific Instruments, vol. 80, pp. 094901-6, 2009.
[27] S. Shen, A. Narayanaswamy, S. Goh, and G. Chen, "Thermal conductance of bimaterial microcantilevers," Applied Physics Letters, vol. 92, pp. 063509-3, 2008.
[28] M. Toda, T. Ono, F. Liu, and I. Voiculescu, "Evaluation of bimaterial cantilever beam for heat sensing at atmospheric pressure," Review of Scientific Instruments, vol. 81, pp. 055104-6, 2010.
[29] S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, "Polyethylene nanofibres with very high thermal conductivities," Nat Nano, vol. 5, pp. 251-255, 2010.
[30] D. G. Cahill, "Thermal Conductivity Measurements from 30K-750K: The 3 Omega Method," Rev. Sci. Instrum., vol. 61, p. 802~808, 1990.
[31] 劉勇志, "3ω方法量測熱傳導係數之溫度效應".國立清華大學碩士論文, 2004.[32] L. W. Martin, Y. H. Chu, and R. Ramesh, "Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films," Materials Science and Engineering: R: Reports, vol. 68, pp. 89-133, 2010.
[33] R. C. Sousa and I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)," Comptes Rendus Physique, vol. 6, pp. 1013-1021, 2005.
[34] J. B. Cui, R. Sordan, M. Burghard, and K. Kern, "Carbon nanotube memory devices of high charge storage stability," Applied Physics Letters, vol. 81, pp. 3260-3262, 2002.
[35] V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, "Thermal characterization and analysis of phase change random access memory," Journal of Applied Physics, vol. 98, pp. 013520-7, 2005.
[36] S. S. Kim, S. M. Jeong, K. H. Lee, Y. K. Park, Y. T. Kim, J. T. Kong, and H. L. Lee, "Simulation for Reset Operation of Ge2Sb2Te5 Phase-Change Random Access Memory," Jpn. J. Appl. Phys. , vol. 44, p. 5943, 2005.
[37] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 28, pp. 223-262, 2010.
[38] W. P. Risk, C. T. Rettner, and S. Raoux, "In situ 3 omega techniques for measuring thermal conductivity of phase-change materials," Review of Scientific Instruments, vol. 79, p. 026108, 2008.
[39] J. L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, "Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400 [degree]C," Journal of Applied Physics, vol. 107, pp. 044314-6, 2010.
[40] H.-C. Chien, D.-J. Yao, and C.-T. Hsu, "Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric," Applied Physics Letters, vol. 93, pp. 231910-3, 2008.
[41] H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, "Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film," Rev. Sci. Instrum., vol. 79, p. 054902, 2008.
[42] M. Okuda and S. Ohkubo, "A novel method for measuring the thermal conductivity of submicrometre thick dielectric films," Thin Solid Films, vol. 213, pp. 176-181, 1992.
[43] S. F. Diaz, J. F. Zhu, N. Shamir, and C. T. Campbell, "Pyroelectric heat detector for measuring adsorption energies on thicker single crystals," Sensors and Actuators B: Chemical, vol. 107, pp. 454-460, 2005.
[44] M.-J. Huang, T.-Y. Chang, H.-C. Chien, W.-C. Sun, and D.-J. Yao, "The thickness difference method for measuring the thermal conductivity of thick films," Journal of Microelectromechanical Systems, Vol. 19, Issue 4, pp895-902, 2010.