跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜國俊
研究生(外文):Do ,Tuan Quoc
論文名稱:不均向膨脹宇宙的穩定性分析
論文名稱(外文):STABILITY ANALYSIS OF ANISOTROPICALLY EXPANDING UNIVERSES
指導教授:高文芳高文芳引用關係
指導教授(外文):W. F. Kao
口試日期:2015-09-10
學位類別:博士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:105
中文關鍵詞:宇宙膨脹無毛猜測Bianchi 空間穩定分析廣義相對論宇宙學
外文關鍵詞:Cosmic inflationno-hair conjectureBianchi spacesStability analysisGeneral RelativityCosmology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
The main task of this Ph.D. thesis is seeking Bianchi type I metrics, which are homogeneous but anisotropic space, and studying their stability in some interesting cosmological models/theories to see whether they respect the well-known cosmic no-hair conjecture proposed by Hawking and his colleagues.

In particular, chapters 2 and 3 of this thesis include results in some extended scenarios of a supergravity motivated model proposed by Kanno, Soda, and Watanabe recently, which includes a coupling between the scalar field $
hi$ and the $U(1)$ field $A_\mu$ such as $f^2(

hi) F_{\mu\nu}F^{\mu\nu}$. As a result, this coupling causes stable spatial anisotropies in all the studied scenarios, in which the scalar field $
hi$ can be either canonical or non-canonical forms like the Dirac-Born-Infeld (DBI) or supersymmetric Dirac-Born-Infeld (SDBI) form. In other word, the existence of this coupling always leads to counterexamples to the cosmic no-hair conjecture. In order to make this conjecture alive, we introduce a phantom field $
si$, whose kinetic energy is negative definite, to these models. As a result, the inclusion of the phantom field $
si$ makes the following spatial hairs unstable during the inflationary phase, no matter the form of the scalar field $
hi$.

In chapter 4, we study the cosmological implications of a non-linear massive gravity theory proposed by de Rham, Gabadadze, and Tolley (dRGT) recently, which has been shown to be free of the Boulware-Deser ghost. In particular, we are able to find a simple stable anisotropic cosmological solution to the dRGT theory. More interestingly, we are also able to show the cosmological constant-like behavior of massive graviton terms in the dRGT theory. This result might give us a hint in order to investigate the nature of cosmological constant $\Lambda$. Similar to the previous chapters, we introduce the phantom field into the system and see that this extra field does lead the anisotropic cosmological solution to unstable state in general.

According to the study presented in this Ph.D. thesis, we might come to a conclusion that the phantom field is closely associated with the validity of the cosmic no-hair conjecture by causing, at least, one unstable mode to anisotropic metric(s).
The main task of this Ph.D. thesis is seeking Bianchi type I metrics, which are homogeneous but anisotropic space, and studying their stability in some interesting cosmological models/theories to see whether they respect the well-known cosmic no-hair conjecture proposed by Hawking and his colleagues.

In particular, chapters 2 and 3 of this thesis include results in some extended scenarios of a supergravity motivated model proposed by Kanno, Soda, and Watanabe recently, which includes a coupling between the scalar field $
hi$ and the $U(1)$ field $A_\mu$ such as $f^2(

hi) F_{\mu\nu}F^{\mu\nu}$. As a result, this coupling causes stable spatial anisotropies in all the studied scenarios, in which the scalar field $
hi$ can be either canonical or non-canonical forms like the Dirac-Born-Infeld (DBI) or supersymmetric Dirac-Born-Infeld (SDBI) form. In other word, the existence of this coupling always leads to counterexamples to the cosmic no-hair conjecture. In order to make this conjecture alive, we introduce a phantom field $
si$, whose kinetic energy is negative definite, to these models. As a result, the inclusion of the phantom field $
si$ makes the following spatial hairs unstable during the inflationary phase, no matter the form of the scalar field $
hi$.

In chapter 4, we study the cosmological implications of a non-linear massive gravity theory proposed by de Rham, Gabadadze, and Tolley (dRGT) recently, which has been shown to be free of the Boulware-Deser ghost. In particular, we are able to find a simple stable anisotropic cosmological solution to the dRGT theory. More interestingly, we are also able to show the cosmological constant-like behavior of massive graviton terms in the dRGT theory. This result might give us a hint in order to investigate the nature of cosmological constant $\Lambda$. Similar to the previous chapters, we introduce the phantom field into the system and see that this extra field does lead the anisotropic cosmological solution to unstable state in general.

According to the study presented in this Ph.D. thesis, we might come to a conclusion that the phantom field is closely associated with the validity of the cosmic no-hair conjecture by causing, at least, one unstable mode to anisotropic metric(s).
1 Introduction 1
2 Two scalar fields model 16
2.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Anisotropic power-law solutions . . . . . . . . . . . . . . . . . . . . . 17
2.3 Stability analysis of the expanding solutions . . . . . . . . . . . . . . . . . . . 20
3 Dirac-Born-Infeld models 26
3.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Anisotropic power-law solutions . . . . . . . . . . . . . . . . . . . . . 27
3.3 Stability analysis of the expanding solutions . . . . . . . . . . . . . . . . . . . 33
3.3.1 Dynamical equations . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Power-law perturbations . . . . . . . . . . . . . . . . . . . 36
3.4 The two-scalar-fields DBI model . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Anisotropic power-law solutions . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Stability analysis of the expanding solutions . . . . . . . . . . . . . . . 44
3.5 Supersymmetric extension of DBI model . . . . . . . . . . . . . . . . . . . . . 48
4 Non-linear massive gravity theory 50
4.1 Introduction . . . . . . . . . . . . . . . . . 50
4.2 The Stuckelberg formulation . . . . . . . . . . . . . . . . . . . 51
4.2.1 Effective cosmological constant . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Alternative proof . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Some additional properties of the fiducial field equations . . . . . . . . . . . . 58
4.3.1 The recurrence relation of the massive Lagrangian . . . . . . . . . . . . 58
4.3.2 The traceless quartic terms . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Bianchi type I physical metric and fiducial metric . . . . . . . . . . . . . . . . 60
4.5 The constraint equations . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 A = B solutions . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 A $\neq$ B solutions . . . . . . . . . . . . . . . . . . . . . 64
4.6 Anisotropic cosmological solution and its stability . . . . . . . . . . . . . . . . 66
4.6.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Effect of scalar
fields . . . . . . . . . . . . . . . . . . . . . . 71
4.6.3 Isotropic fiducial metric and global stability analysis . . . . . . . . . . 72
5 Conclusions 75
6 Appendix 78
6.1 Supersymmetric basic of KSW model . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Derivations for field equations of KSW model . . . . . . . . . . . . . . . . . . 81
6.2.1 Einstein equations . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Vector field equation . . . . . . . . . . . . . . . . . . . . . 84
6.2.3 Scalar field equations . . . . . . . . . . . . . . . . . . . . 86
6.2.4 Component equations of Einstein equations . . . . . . . . . . . . . . . 87
6.3 Additional derivations for the massive gravity theory . . . . . . . . . . . . . . 88
6.3.1 Massive graviton terms in the modified Einstein equation . . . . . . . . 88
6.3.2 Another way to obtain the vanishing $Y_{\mu\nu}$ . . . . . . . . . . . . . . . . . 89
6.3.3 Additional calculations for global stability analysis . . . . . . . . . . . 91

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981); A. D. Linde, Phys. Lett. 108B, 389 (1982); A. A. Starobinsky, Phys. Lett. 91B, 99 (1980); A. D. Linde, Phys. Lett. 129B, 177 (1983); A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[2] A. H. Guth, Phys. Rep. 333-334, 555 (2000) [astro-ph/0002156]; A. Linde, Phys. Rep. 333-334, 575 (2000); A. Linde, Lect. Notes Phys. 738, 154 (2008) [arXiv:0705.0164]; A. Linde, Particle Physics and Inflationary Cosmology, CRC Press (1990).
[3] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge University Press (2000); V. Mukhanov, Physical Foundations of Cosmology, Cambridge
University Press (2005); S. Weinberg, Cosmology, Oxford University Press (2008).
[4] B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod. Phys. 78, 537 (2006) [astro-ph/0507632]; A. Mazumdar and J. Rocher, Phys. Rep. 497, 85 (2011) [arXiv:1001.0993];
S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011) [arXiv:1011.0544].
[5] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison-Wesley (2003); O. Gron and S. Hervik, Einstein's General Theory of Relativity: With
Modern Applications in Cosmology, Springer (2007); L. Ryder, Introduction to General Relativity, Cambridge University Press (2009).
[6] E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011) [arXiv:1001.4538]; G. Hinshaw et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser.
208, 19 (2013) [arXiv:1212.5226].
[7] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A22 (2014) [arXiv:1303.5082]; Astron. Astrophys. 571, A23 (2014) [arXiv:1303.5083]; Astron.
Astrophys. 571, A24 (2014) [arXiv:1303.5084]; Astron. Astrophys. 571, A1 (2014) [arXiv:1303.5062].
[8] P. A. R. Ade et al. (BICEP2 Collaboration), Phys. Rev. Lett. 112, 241101 (2014) [arXiv:1403.3985].
[9] A. G. Riess et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]; S. Perlmutter et al., Astrophys. J. 517, 565 (1999) [astro-ph/9812133].
[10] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [hep-th/0603057].
[11] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003) [astro-ph/0207347].
[12] R. R. Caldwell, Phys. Lett. B 545, 23 (2002) [astro-ph/9908168]; Z.-K. Guo, Y.-S. Piao,
X. Zhang, and Y.-Z. Zhang, Phys. Lett. B 608, 177 (2005) [astro-ph/0410654]; Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, Phys. Rep. 493, 1 (2010) [arXiv:0909.2776];
I. Y. Aref'eva, N. V. Bulatov, and S. Y. Vernov, Theor. Math. Phys. 163, 788 (2010) [arXiv:0911.5105].
[13] D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997) [hep-ph/9606387]; L. Alabidi and D. H. Lyth, J. Cosmol. Astropart. Phys. 05 (2006) 016 [astro-ph/0510441]; D. H. Lyth and A. R. Liddle, Phys. Lett. B 291, 391 (1992) [astro-ph/9208007].
[14] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990); F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. D 47, 426
(1993) [hep-ph/9207245].
[15] J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014) [arXiv:1303.3787]; J. Martin, C. Ringeval, R. Trotta, and V. Vennin, J. Cosmol. Astropart. Phys. 03 (2014) 039 [arXiv:1312.3529].
[16] P. A. R. Ade et al. (Planck Collaboration), arXiv:1409.5738.
[17] P. A. R. Ade et al. (BICEP2/Keck, Planck Collaborations), Phys. Rev. Lett. 114, 101301 (2015) [arXiv:1502.00612].
[18] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A26 (2014) [arXiv:1303.5086].
[19] A. Ijjas, P. J. Steinhardt, and A. Loeb, Phys. Lett. B 723, 261 (2013) [arXiv:1304.2785]; Phys. Lett. B 736, 142 (2014) [arXiv:1402.6980].
[20] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977); S. W. Hawking and I. G. Moss, Phys. Lett. B110, 35 (1982).
[21] R. Wald, Phys. Rev. D 28, 2118 (1983).
[22] G. F. R. Ellis and M. A. H. MacCallum, Commun. Math. Phys. 12, 108 (1969); G. F. R. Ellis, Gen. Relativ. Gravit. 38, 1003 (2006); J. Wainwright and G. F. R. Ellis (eds.),
Dynamical Systems in Cosmology, Cambridge University Press (1997); O. Gron and S. Hervik, Einstein's General Theory of Relativity: With Modern Applications in Cosmology,
Springer (2007), chapters 13-15.
[23] J. D. Barrow and S. Hervik, Phys. Rev. D 73, 023007 (2006) [gr-qc/0511127]; Phys. Rev. D 74, 124017 (2006) [gr-qc/0610013]; Phys. Rev. D 81, 023513 (2010) [arXiv:0911.3805].
[24] W. F. Kao and I.-C. Lin, J. Cosmol. Astropart. Phys. 01 (2009) 022; Phys. Rev. D 79, 043001 (2009); Phys. Rev. D 83, 063004 (2011).
[25] J. Middleton, Classical Quantum Gravity 27, 225013 (2010) [arXiv:1007.4669].
[26] A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009 [arXiv:0802.2068]; S. Kanno, M. Kimura, J. Soda, and S. Yokoyama, J. Cosmol. Astropart. Phys. 08 (2008) 034 [arXiv:0806.2422]; B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009) [arXiv:0809.2779]; Phys. Rev. D 79, 063517 (2009) [arXiv:0812.1231]; Phys. Rev. D 80, 123530 (2009) [arXiv:0909.3524].
[27] S. Kanno, J. Soda, and M. Watanabe, J. Cosmol. Astropart. Phys. 12 (2010) 024 [arXiv:1010.5307]; M. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett. 102, 191302 (2009) [arXiv:0902.2833]; Prog. Theor. Phys. 123, 1041 (2010) [arXiv:1003.0056]; Mon. Not. R. Astron. Soc. 412, L83 (2011) [arXiv:1011.3604]; J. Soda, arXiv:1410.8643.
[28] P. V. Moniz and J. Ward, Classical Quantum Gravity 27, 235009 (2010) [arXiv:1007.3299]; B. Himmetoglu, J. Cosmol. Astropart. Phys. 03 (2010) 023 [arXiv:0910.3235]; T. R. Dulaney and M. I. Gresham, Phys. Rev. D 81, 103532 (2010)
[arXiv:1001.2301]; A. E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, Phys. Rev. D 81, 063528 (2010) [arXiv:1001.4088]; J. M. Wagsta and K. Dimopoulos, Phys. Rev. D 83, 023523 (2011) [arXiv:1011.2517]; R. Emami, H. Firouzjahi, S. M. S. Movahed, and M. Zarei, J. Cosmol. Astropart. Phys. 02 (2011) 005 [arXiv:1010.5495]; K. Murata
and J. Soda, J. Cosmol. Astropart. Phys. 06 (2011) 037 [arXiv:1103.6164]; S. Hervik, D. F. Mota, and M. Thorsrud, J. High Energy Phys. 11 (2011) 146 [arXiv:1109.3456];
A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, J. Cosmol. Astropart. Phys. 01 (2012) 016 [arXiv:1109.5573]; R. Emami and H. Firouzjahi, J. Cosmol. Astropart. Phys. 01 (2012) 022 [arXiv:1111.1919]; K. Dimopoulos, G. Lazarides, and J. M. Wagsta, J. Cosmol. Astropart. Phys. 02 (2012) 018 [arXiv:1111.1929]; S. Bhowmick and S. Mukherji,
Mod. Phys. Lett. A 27, 1250009 (2012) [arXiv:1105.4455]; K. Yamamoto, M.-a. Watanabe, and J. Soda, Classical Quantum Gravity 29, 145008 (2012) [arXiv:1201.5309]; A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Rev. D 85, 123508 (2012) [arXiv:1203.0219]; M. Thorsrud, D. F. Mota, and S. Hervik, J. High Energy Phys. 10 (2012) 066 [arXiv:1205.6261]; K. Yamamoto, Phys. Rev. D 85, 123504 (2012) [arXiv:1203.1071]; N. Barnaby, R. Namba, and M. Peloso, Phys. Rev. D 85, 123523 (2012) [arXiv:1202.1469]; K.-i. Maeda and K. Yamamoto, Phys. Rev. D 87, 023528 (2013) [arXiv:1210.4054]; N. Bartolo, S. Matarrese, M. Peloso, and A. Ricciardone, Phys. Rev. D 87, 023504 (2013) [arXiv:1210.3257]; J. Ohashi, J. Soda, and S. Tsujikawa, Phys. Rev. D 87, 083520 (2013) [arXiv:1303.7340]; D. H. Lyth and M. Karciauskas, J. Cosmol. Astropart. Phys. 05 (2013) 011 [arXiv:1302.7304]; H. Funakoshi and K. Yamamoto, Classical Quantum Gravity 30,
135002 (2013) [arXiv:1212.2615]; M. Shiraishi, E. Komatsu, M. Peloso, and N. Barnaby, J. Cosmol. Astropart. Phys. 05 (2013) 002 [arXiv:1302.3056]; A. A. Abolhasani, R.
Emami, J. T. Firouzjaee, and H. Firouzjahi, J. Cosmol. Astropart. Phys. 08 (2013) 016 [arXiv:1302.6986]; S. Baghram, M. H. Namjoo, and H. Firouzjahi, J. Cosmol. Astropart. Phys. 08 (2013) 048 [arXiv:1303.4368]; J. Ohashi, J. Soda, and S. Tsujikawa, J. Cosmol. Astropart. Phys. 12 (2013) 009 [arXiv:1308.4488]; J. Ohashi, J. Soda, and S. Tsujikawa, Phys. Rev. D 88, 103517 (2013) [arXiv:1310.3053]; K.-i. Maeda and K. Yamamoto, J. Cosmol. Astropart. Phys. 12 (2013) 018 [arXiv:1310.6916]; M. Giovannini, Phys. Rev. D 89, 063512 (2014) [arXiv:1312.4832]; A. A. Abolhasani, R. Emami, and H. Firouzjahi, J. Cosmol. Astropart. Phys. 05 (2014) 016 [arXiv:1311.0493]; R. Emami, H. Firouzjahi, and M. Zarei, Phys. Rev. D 90, 023504 (2014) [arXiv:1401.4406]; X. Chen, R. Emami, H. Firouzjahi, and Y. Wang, J. Cosmol. Astropart. Phys. 08 (2014) 027 [arXiv:1404.4083].
[29] T. Q. Do and W. F. Kao, Phys. Rev. D 84, 123009 (2011); T. Q. Do, W. F. Kao, and I.-C. Lin, Phys. Rev. D 83, 123002 (2011).
[30] T. Damour and P. Spindel, Phys. Rev. D 83, 123520 (2011) [arXiv:1103.2927].
[31] E. Weber, J. Math. Phys. (N.Y.) 25, 3279 (1984); H. H. Soleng, Classical Quantum Gravity 6, 1387 (1989); N. Kaloper, Phys. Rev. D 44, 2380 (1991).
[32] C. Chang, W. F. Kao, and I.-C. Lin, Phys. Rev. D 84, 063014 (2011).
[33] Y. Misonoh, K.-i. Maeda, and T. Kobayashi, Phys. Rev. D 84, 064030 (2011) [arXiv:1104.3978].
[34] M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman, Phys. Rev. D 86, 104059 (2012) [arXiv:1209.4859]; C. Chang and W. F. Kao, Phys. Rev. D 88, 063504 (2013).
[35] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama, Phys. Lett. B 717, 295 (2012) [arXiv:1206.2723]; A. De Felice, A. E. Gumrukcuoglu, and S. Mukohyama, Phys. Rev. Lett. 109, 171101 (2012) [arXiv:1206.2080]; A. De Felice, A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama, J. Cosmol. Astropart. Phys. 05 (2013) 035 [arXiv:1303.4154]; T. Q. Do and W. F. Kao, Phys. Rev. D 88, 063006 (2013); W. F. Kao and I.-C. Lin, Phys. Rev. D 90, 063003 (2014).
[36] Y. Sakakihara, J. Soda, and T. Takahashi, Prog. Theor. Exp. Phys. 2013, 033E02 [arXiv:1211.5976]; K.-i. Maeda and M. S. Volkov, Phys. Rev. D 87, 104009 (2013) [arXiv:1302.6198].
[37] Y.-F. Cai, R. Brandenberger, and P. Peter, Classical Quantum Gravity 30, 075019 (2013) [arXiv:1301.4703]
[38] J. D. Barrow, M. Thorsrud, and K. Yamamoto, J. High Energy Phys. 02 (2013) 146 [arXiv:1211.5403].
[39] D. W. Chiou and K. Vandersloot, Phys. Rev. D 76, 084015 (2007) [arXiv:0707.2548]; D. W. Chiou, Phys. Rev. D 76, 124037 (2007) [arXiv:0710.0416]; A. Ashtekar and E. Wilson-Ewing, Phys. Rev. D 79 083535 (2009) [arXiv:0903.3397]; Phys. Rev. D 80, 123532 (2009) [arXiv:0910.1278]; W. Nelson and M. Sakellariadou, Phys. Rev. D 80, 063521 (2009) [arXiv:0907.4057]; M. Martin-Benito, G. A. M. Marugan, and T. Pawlowski, Phys. Rev. D 80, 084038 (2009) [arXiv:0906.3751]; E. Wilson-Ewing, Phys. Rev. D 82, 043508 (2010) [arXiv:1005.5565]; A. Corichi and E. Montoya, Phys. Rev. D 85, 104052 (2012) [arXiv:1201.4853]; K. Fujio and T. Futamase, Phys. Rev. D 85,124002 (2012); Phys. Rev. D 87, 064013 (2013); B. Gupt and P. Singh, Classical Quantum Gravity 30, 145013 (2013) [arXiv:1304.7686]; P. Singh and E. Wilson-Ewing, Classical Quantum Gravity 31, 035010 (2014) [arXiv:1310.6728].
[40] T. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 06 (2008) 018 [arXiv:0801.3676]; D. C. Rodrigues, Phys. Rev. D 78, 063013 (2008) [arXiv:0806.3613]; R. Battye and A. Moss, Phys. Rev. D 80, 023531 (2009) [arXiv:0905.3403]; S. A. Appleby and E. V. Linder, Phys. Rev. D 87, 023532 (2013) [arXiv:1210.8221]; T. Harko and F. S. N. Lobo, J. Cosmol. Astropart. Phys. 07 (2013) 036 [arXiv:1304.0757].
[41] N. Bartolo, S. Matarrese, M. Peloso, and A. Ricciardone, J. Cosmol. Astropart. Phys. 08 (2013) 022 [arXiv:1306.4160]; M. Akhshik, R. Emami, H. Firouzjahi, and Y. Wang, J. Cosmol. Astropart. Phys. 09 (2014) 012 [arXiv:1405.4179].
[42] C. R. Fadragas, G. Leon, and E. N. Saridakis, Classical Quantum Gravity 31, 075018 (2014) [arXiv:1308.1658].
[43] I. Obata, T. Miura, and J. Soda, Phys. Rev. D 90, 045005 (2014) [arXiv:1405.3091].
[44] C. Pitrou, T. S Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 04 (2008) 004 [arXiv:0801.3596].
[45] J. D. Barrow, Perturbations of a De Sitter Universe, In The Very Early Universe, eds. G. Gibbons, S. W. Hawking and S. T. C. Siklos, (Cambridge University Press, p.267, 1983).
[46] W. Boucher and G. W. Gibbons, In The Very Early Universe, ed. G. Gibbons, S. W. Hawking and S. T. C. Siklos, (Cambridge University Press, p. 273, 1983).
[47] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[48] L. G. Jensen and J. Stein-Schabes, Phys. Rev. D 35, 1146 (1987).
[49] J. D. Barrow, Phys. Lett. B 187, 12 (1987).
[50] J. D. Barrow, Phys. Lett. B 235, 40 (1990); J. D. Barrow and P. Saich, Phys. Lett. B 249, 406 (1990); J. D. Barrow and A. R. Liddle, Phys. Rev. D 47, R5219 (1993) [astro-ph/9303011]; A. D. Rendall, Classical Quantum Gravity 22, 1655 (2005) [gr-qc/0501072].
[51] J. D. Barrow, Nucl. Phys. B 296, 697 (1988).
[52] J. D. Barrow and S. Cotsakis, Phys. Lett. B. 214, 515 (1988).
[53] K. I. Maeda, Phys. Rev. D 39, 3159 (1989).
[54] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, Phys. Rep. 528, 161 (2013) [arXiv:1212.2921]; J. Soda, Classical Quantum Gravity 29, 083001 (2012) [arXiv:1201.6434].
[55] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press (1992); S. P. Martin, Lecture: A Supersymmetry Primer, hep-ph/9709356v6.
[56] D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String Theory, Institute of Physics Publishing (1994), chapter 5.
[57] J. Martin and J. Yokoyama, J. Cosmol. Astropart. Phys. 01 (2008) 025 [arXiv:0711.4307].
[58] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505 (2004) [hep-th/0310221]; M. Alishahiha, E. Silverstein, and D. Tong, Phys. Rev. D 70, 123505 (2004) [hep-th/0404084].
[59] S. Sasaki, M. Yamaguchi, and D. Yokoyama, Phys. Lett. B 718, 1 (2012) [arXiv:1205.1353].
[60] W. F. Kao and T. Q. Do, Anisotropic power-law solutions for a super-symmetry Dirac-Born-Infeld theory, in preparation (2015).
[61] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[62] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011) [arXiv:1011.1232]; C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010) [arXiv:1007.0443].
[63] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).
[64] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann. Phys. (N.Y.) 305, 96 (2003) [hep-th/0210184]; S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2012)
[arXiv:1106.3344]; S. F. Hassan and R. A. Rosen, J. High Energy Phys. 04 (2012) 123 [arXiv:1111.2070]; S. F. Hassan, R. A. Rosen, and A. Schmidt-May, J. High Energy Phys.
02 (2012) 026 [arXiv:1109.3230]; S. F. Hassan, A. Schmidt-May, and M. von Strauss, Phys. Lett. B 715, 335 (2012) [arXiv:1203.5283]; J. Kluson, Phys. Rev. D 86, 124005 (2012)
[arXiv:1202.5899]; Phys. Rev. D 86, 044024 (2012) [arXiv:1204.2957].
[65] C. de Rham, G. Gabadadze, and A. Tolley, J. High Energy Phys. 11 (2011) 093 [arXiv:1108.4521]; Phys. Lett. B 711, 190 (2012) [arXiv:1107.3820]; M. Mirbabayi, Phys.
Rev. D 86, 084006 (2012) [arXiv:1112.1435]; K. Hinterbichler and R. A. Rosen, J. High Energy Phys. 07 (2012) 047 [arXiv:1203.5783].
[66] T. Q. Do and W. F. Kao, Phys. Rev. D 88, 063006 (2013).
[67] X. Chen, Phys. Rev. D 71, 063506 (2005) [hep-th/0408084]; J. High Energy Phys. 08 (2005) 045 [hep-th/0501184].
[68] S. E. Shandera and S. H. Tye, J. Cosmol. Astropart. Phys. 05 (2006) 007 [hep-th/0601099].
[69] E. J. Copeland, S. Mizuno, and M. Shaeri, Phys. Rev. D 81, 123501 (2010) [arXiv:1003.2881].
[70] C. van de Bruck, D. F. Mota, and J. M. Weller, J. Cosmol. Astropart. Phys. 03 (2011) 034 [arXiv:1012.1567]; J. M. Weller, C. van de Bruck, and D. F. Mota, J. Cosmol. Astropart. Phys. 06 (2012) 002 [arXiv:1111.0237].
[71] M. Spalinski, J. Cosmol. Astropart. Phys. 05 (2007) 017 [hep-th/0702196]; Phys. Lett. B 650, 313 (2007) [hep-th/0703248].
[72] Z. K. Guo and N. Ohta, J. Cosmol. Astropart. Phys. 04 (2008) 035 [arXiv:0803.1013].
[73] E. Pajer, J. Cosmol. Astropart. Phys. 04 (2008) 031 [arXiv:0802.2916].
[74] X. Chen, Phys. Rev. D 72, 123518 (2005) [astro-ph/0507053]; X. Chen, M. x. Huang, S. Kachru, and G. Shiu, J. Cosmol. Astropart. Phys. 01 (2007) 002 [hep-th/0605045]; X. Chen, M. x. Huang, and G. Shiu, Phys. Rev. D 74, 121301 (2006) [hep-th/0610235]; F. Arroja and K. Koyama, Phys. Rev. D 77, 083517 (2008) [arXiv:0802.1167]; D. Langlois,
S. Renaux-Petel, D. A. Steer, and T. Tanaka, Phys. Rev. Lett. 101, 061301 (2008) [arXiv:0804.3139]; D. Langlois, S. Renaux-Petel, D. A. Steer, and T. Tanaka, Phys. Rev. D 78, 063523 (2008) [arXiv:0806.0336]; F. Arroja, S. Mizuno, and K. Koyama, J. Cosmol. Astropart. Phys. 08 (2008) 015 [arXiv:0806.0619]; D. Langlois, S. Renaux-Petel, and D. A.
Steer, J. Cosmol. Astropart. Phys. 04 (2009) 021 [arXiv:0902.2941]; X. Gao and B. Hu, J. Cosmol. Astropart. Phys. 08 (2009) 012 [arXiv:0903.1920]; X. Chen, B. Hu, M. x. Huang, G. Shiu, and Y. Wang, J. Cosmol. Astropart. Phys. 08 (2009) 008 [arXiv:0905.3494]; F. Arroja, S. Mizuno, K. Koyama, and T. Tanaka, Phys. Rev. D 80, 043527 (2009)
[arXiv:0905.3641]; S. Mizuno, F. Arroja, K. Koyama, and T. Tanaka, Phys. Rev. D 80, 023530 (2009) [arXiv:0905.4557]; X. Gao, M. Li, and C. Lin, J. Cosmol. Astropart. Phys.
11 (2009) 007 [arXiv:0906.1345]; S. Mizuno, F. Arroja, and K. Koyama, Phys. Rev. D 80, 083517 (2009) [arXiv:0907.2439]; S. Renaux-Petel, J. Cosmol. Astropart. Phys. 10 (2009) 012 [arXiv:0907.2476]; X. Chen and Y. Wang, J. Cosmol. Astropart. Phys. 04 (2010) 027 [arXiv:0911.3380]; K. Koyama, Classical Quantum Gravity 27, 124 001 (2010) [arXiv:1002.0600]; X. Chen, Adv. Astron. 2010, 638979 (2010) [arXiv:1002.1416].
[75] M.-a. Watanabe, S. Kanno, and J. Soda, Prog. Theor. Phys. 123, 1041 (2010) [arXiv:1003.0056]; Mon. Not. R. Astron. Soc. 412, L83 (2011) [arXiv:1011.3604]; J. Ohashi, J. Soda, and S. Tsujikawa, J. Cosmol. Astropart. Phys. 12 (2013) 009 [arXiv:1308.4488]; X. Chen, R. Emami, H. Firouzjahi, and Y. Wang, J. Cosmol. Astropart. Phys. 08 (2014) 027 [arXiv:1404.4083].
[76] M. Yamaguchi, Classical Quantum Gravity 28, 103001 (2011) [arXiv:1101.2488]; J. Khoury, J.-L. Lehners, B. Ovrut, Phys. Rev. D 83, (2011) 125031 [arXiv:1012.3748];
M. Koehn, J.-L. Lehners, and B. A. Ovrut, Phys. Rev. D 86, 085019 (2012) [arXiv:1207.3798]; Phys. Rev. D 86, 123510 (2012) [arXiv:1208.0752].
[77] M. Rocek and A. A. Tseytlin, Phys. Rev. D 59, 106001 (1999) [hep-th/9811232]; A. A. Tseytlin, In " M. A. Shifman (ed.): The many faces of the superworld" 417-452 [hepth/
9908105].
[78] C. de Rham, Living Rev. Relativity 17, 7 (2014) [arXiv:1401.4173]; K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012) [arXiv:1105.3735].
[79] R. Arnowitt, S. Deser, and C. W. Misner, gr-qc/0405109; C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010) [arXiv:1007.0443]; C. de Rham and G. Gabadadze, Phys. Lett. B 693, 334 (2010) [arXiv:1006.4367]; M. Fasiello and A. J. Tolley, J. Cosmol. Astropart. Phys. 11 (2012) 035 [arXiv:1206.3852]; C. de Rham and S. Renaux-Petel, J. Cosmol. Astropart. Phys. 01 (2013) 035 [arXiv:1206.3482].
[80] G. D'Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, and A. J. Tolley, Phys. Rev. D 84, 124046 (2011) [arXiv:1108.5231]; G. D'Amico, Phys. Rev. D 86, 124019 (2012) [arXiv:1206.3617].
[81] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama, J. Cosmol. Astropart. Phys. 11 (2011) 030 [arXiv:1109.3845]; J. Cosmol. Astropart. Phys. 03 (2012) 006 [arXiv:1111.4107].
[82] D. Langlois and A. Naruko, Classical Quantum Gravity 29, 202001 (2012) [arXiv:1206.6810]; T. Kobayashi, M. Siino, M. Yamaguchi, and D. Yoshida, Phys. Rev. D 86, 061505(R) (2012) [arXiv:1205.4938]; H. Motohashi and T. Suyama, Phys. Rev. D 86, 081502(R) (2012) [arXiv:1208.3019]; C.-I Chiang, K. Izumi, and P. Chen, J. Cosmol. Astropart. Phys. 12 (2012) 025 [arXiv:1208.1222]; C. Deayet, J. Mourad, and G. Zahariade, J. Cosmol. Astropart. Phys. 01 (2013) 032 [arXiv:1207.6338].
[83] A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama, Phys. Lett. B 717, 295 (2012) [arXiv:1206.2723].
[84] A. De Felice, A. E. Gumrukcuoglu, and S. Mukohyama, Phys. Rev. Lett. 109, 171101 (2012) [arXiv:1206.2080]; A. De Felice, A. E. Gumrukcuoglu, C. Lin, and S. Mukohyama,
J. Cosmol. Astropart. Phys. 05 (2013) 035 [arXiv:1303.4154]
[85] A. H. Chamseddine and M. S. Volkov, Phys. Lett. B 704, 652 (2011) [arXiv:1107.5504]; M. S. Volkov, Phys. Rev. D 86, 061502(R) (2012) [arXiv:1205.5713]; Phys. Rev. D 86,
104022 (2012) [arXiv:1207.3723].
[86] P. Gratia, W. Hu, and M. Wyman, Phys. Rev. D 86, 061504(R) (2012) [arXiv:1205.4241].
[87] Y.-F. Cai, D. A. Easson, C. Gao, and E. N. Saridakis, Phys. Rev. D 87, 064001 (2013) [arXiv:1211.0563]; L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. D 85, 044024 (2012) [arXiv:1111.3613].
[88] K. Koyama, G. Niz, and G. Tasinato, Phys. Rev. Lett. 107, 131101 (2011) [arXiv:1103.4708]; Phys. Rev. D 84, 064033 (2011) [arXiv:1104.2143]; Th. M. Nieuwenhuizen,
Phys. Rev. D 84, 024038 (2011) [arXiv:1103.5912]; A. Gruzinov and M. Mirbabayi, Phys. Rev. D 84, 124019 (2011) [arXiv:1106.2551]; D. Comelli, M. Crisostomi, F. Nesti, and L. Pilo, Phys. Rev. D 85, 024044 (2012) [arXiv:1110.4967]; F. Sbisa, G. Niz, K. Koyama, and G. Tasinato, Phys. Rev. D 86, 024033 (2012) [arXiv:1204.1193]; V. Baccetti, P. Martin-Moruno, and M. Visser, J. High Energy Phys. 08 (2012) 108
[arXiv:1206.4720]; M. Mirbabayi and A. Gruzinov, Phys.Rev. D 88, 064008 (2013) [arXiv:1303.2665].
[89] Q.-G. Huang, Y.-S. Piao, and S.-Y. Zhou, Phys. Rev. D 86, 124014 (2012) [arXiv:1206.5678]; G. D'Amico, G. Gabadadze, L. Hui, and D. Pirtskhalava, Phys. Rev. D 87, 064037 (2013) [arXiv:1206.4253]; E. N. Saridakis, Classical Quantum Gravity 30, 075003 (2013) [arXiv:1207.1800]; K. Hinterbichler, J. Stokes, and M. Trodden, Phys. Lett. B 725, 1 (2013) [arXiv:1301.4993]; G. Leon, J. Saavedra, and E. N. Saridakis, Classical Quantum Gravity 30, 135001 (2013) [arXiv:1301.7419]; D.-J. Wu, Y. Cai, and Y.-S. Piao, Phys. Lett. B 721, 7 (2013) [arXiv:1301.4326]; M. Andrews, G. Goon, K. Hinterbichler, J. Stokes, and M. Trodden, Phys. Rev. Lett. 111, 061107 (2013) [arXiv:1303.1177]; Z. Haghani, H. R. Sepangi, and S. Shahidi, Phys. Rev. D 87, 124014 (2013) [arXiv:1303.2843]; A. E. Gumrukcuoglu, K. Hinterbichler, C. Lin, S. Mukohyama, and M. Trodden, Phys. Rev. D 88, 024023 (2013) [arXiv:1304.0449]; R. Gannouji, Md. W. Hossain, M. Sami, and E. N. Saridakis, Phys. Rev. D 87, 123536 (2013) [arXiv:1304.5095].
[90] C. J. Isham, A. Salam, and J. Strathdee, Phys. Rev. D 3, 867 (1971).
[91] S. F. Hassan and R. A. Rosen, J. High Energy Phys. 02 (2012) 126 [arXiv:1109.3515]; M. S. Volkov, J. High Energy Phys. 01 (2012) 035 [arXiv:1110.6153]; Phys. Rev. D 85, 124043 (2012) [arXiv:1202.6682]; V. Baccetti, P. Martin-Moruno, and M. Visser, Classical Quantum Gravity 30, 015004 (2013) [arXiv:1205.2158]; M. Berg, I. Buchberger, J. Enander, E. Mortsell, and S. Sjors, J. Cosmol. Astropart. Phys. 12 (2012) 021 [arXiv:1206.3496].
[92] Y. Sakakihara, J. Soda, and T. Takahashi, Prog. Theor. Exp. Phys. 033E02 (2013) [arXiv:1211.5976].
[93] K.-i. Maeda and M. S. Volkov, Phys. Rev. 87, 104009 (2013) [arXiv:1302.6198].
[94] N. Khosravi, N. Rahmanpour, H. R. Sepangi, and S. Shahidi, Phys. Rev. D 85, 024049 (2012) [arXiv:1111.5346]; K. Hinterbichler and R. A. Rosen, J. High Energy Phys. 07
(2012) 047 [arXiv:1203.5783]; S. F. Hassan, A. Schmidt-May, and M. von Strauss, arXiv:1204.5202; K. Nomura and J. Soda, Phys. Rev. D 86, 084052 (2012) [arXiv:1207.3637].
[95] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann. Phys. (N.Y.) 305, 96 (2003) [hep-th/0210184]; S. L. Dubovsky, J. High Energy Phys. 10 (2004) 076 [hep-th/0409124].
[96] W. F. Kao and U.-L. Pen, Phys. Rev. D 44, 3974 (1991).
108
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top