跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭善仁
研究生(外文):Shan-Jen Kuo
論文名稱:以電灑法及基質輔助雷射脫附法研究奈米單粒子質譜
論文名稱(外文):Nanoparticle mass spectrometry with electrospray ionization and matrix-assisted laser desorption/ionization as the ion source
指導教授:李遠哲李遠哲引用關係張煥正
指導教授(外文):Yuan Tseh LeeHuan-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:電灑法基質輔助雷射脫附法奈米粒子單粒子質譜
外文關鍵詞:Nanoparticlemass spectrometryelectrospray ionizationESImatrix-assisted laser desorption/ionizationMALDIion source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在常用的離子阱質譜儀中,使用一固定無線電頻交流電場(大約1MHz),外加於離子阱之環形電極(ring electrode)與帽極(end caps)間,其限制了該類質譜儀對於帶電粒子的質量偵測範圍,且其所使用的偵測器裝置,(例如:MCP、CEM ……等等偵測器),只適合較小的離子,對於較大的帶電粒子會污染並損壞此偵測器,因此不適合用於偵測質量較大的帶電粒子,是故現今所做的質譜研究,其質量大都小於1000000 m / z(質荷比)的區間。
本論文主要介紹利用電灑離子化方法(Electrospray Ionization)與基質輔助雷射脫附離子化的方法(Matrix-Assisted Laser Desorption Ionization,MALDI)產生較大質量的單粒子,並搭配離子阱而成為一個質譜儀;不同於一般常用的離子阱質譜儀的是:本質譜儀是將音頻交流電場加於離子阱(audio-frequency ion trap)上,藉由降低驅動頻率,並使用光電倍增管來收集帶電粒子的雷射散射光訊號,於是能得到具有較大範圍質荷比(m / z >1000000)的質譜,此質譜儀具有高的解度m /△m>10000,所以說適合於做較大尺度粒子(100nm∼several um)的研究。
在本論文當中,將具體描述兩種不同的質譜實驗方法:
1.利用電灑游離的方法(ESI)來產生帶電粒子並侷限其於阱中,並掃瞄位阱電壓,使音頻離子阱操作於質量-選擇不穩定模式當中,可令被捕捉的粒子逐一拋出。當粒子通過檢測用之雷射光,會產生散射光訊號,收集此散色光隨時間的變化,即可得到質量╱電荷(質荷比m/z)的訊息,亦即所謂的單粒子質譜。此外並提供一種校正此質譜儀之方法,藉由觀測單一粒子於離子阱中的運動軌跡,測量本徵頻率(secular frequency),而獲得質荷比的標定值。 此部份的實驗特色是:用雷射散射光當作偵測源,而在得到的質譜圖中,每一個質譜峰均代表為不同質荷比的單一粒子。
2.以能夠產生螢光的染料粒子作為實驗樣品,進而利用MALDI來產生帶電粒子並侷限其於阱中,再用另一道雷射來激發阱中的染料粒子,藉由探測染料粒子的螢光訊號,檢驗是否有帶電粒子產生,並分析其帶電狀態。此部份的實驗特色是:藉由螢光探測方式,證明用MALDI的方法,可以產生質荷比大於1000000的粒子。

The quadrupole ion trap (QIT) was first invented by Paul and Steinwedel in 1960. It has been used in various fields, for instance, mass analysis of atomic, molecular, and cluster ions. In commercially available ion trap mass spectrometer (ITMS), a radio-frequency (RF) ac field (typically 1MHz)is applied between the ring and the end-cap electrodes of the trap. This frequency limits the mass analysis range of ITMS. Traditionally, most of the ITMS are combined with microchannel plates (MCP) or channeltron electron multiplier (CEM) detectors. These kinds of mass spectrometers are particularly suitable for smaller ions detection, because large charged particles have the lower impact velocities on the detector elements.
We adopt electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) as two different ionization methods to produce high mass charged particles, and an audio-frequency ion trap for trapping these large charged particles. We used a photomultiplier tube (PMT) to collect scattered laser light from charged particles as the detecting method and also to calibrate such mass spectra. The mass spectrometer is suitable for interrogating high-mass particles, that are heavier than 1000000 Daltons (particle sizes ranged from 100nm to several micrometer).

中文論文摘要---------------------------------------------------1
Introduction---------------------------------------------------3
Chapter 1 Electrospray Ionization—Ion Trap Mass Spectrometer--5
1.1 Electrospray ionization (ESI) --------------------7
1.2 The ion source system ----------------------------9
1.3 The Quadrupole Ion Trap (QIT)-------------------12
1.4 Scattered light detection------------------------15
Chapter 2 Calibration of the Single Particle Mass Spectrometer
(SPMS)----------------------------------------------19
2.1 A novel method of mass --------------------------20
2.2 Detection of the secular frequency -------------21
2.3 Determination of the ejection point-------------24
Chapter 3 Results and discussion of the ESI mass spectra --29- 3.1 Amino-Polystyrene (APS) particles --------------30
3.2 Single-Particle Mass Spectra (SP-MS)------------31
3.3 The charged-state distribution------------------34
3.4 Applications of ESI-MS--------------------------37
3.5 Conclusion -------------------------------------40
Chapter 4 Generated particles with molecular weights larger
than 5MDa------------------------------------------42- 4.1 Matrix-assisted laser desorption ionization
(MALDI) -------------------------------------------45
4.2 The MALDI-ITMS -------------------------------48
4.3 Result and discussion
4.3.1 Detection of the charged nanoparticles---------52
4.3.2 Damping effects--------------------------------53
4.3.3 Charge state analysis--------------------------55
4.3.4 Upper mass limits------------------------------58
4.5 Conclusion ---------------------------------------59
References---------------------------------------------------61

References
1. Paul W.; Steinwedel H. US Patent 2,939,952 (1960); Paul
W. Rev. Mod. Phys. 1990, 62, 531.
2. March R.E.; Hughes R.J. ; Quadrupole Storage Mass
Spectrometer, Wiley, New York, 1989.
3. Stephen D. Fuerstenau; W. Henry Benner Rapid Commun. Mass
Spectrom. 1995, 8, 1528-1538.
4. Paul Kebarle and Liang Tang Anal. Chem. 1993, 65, 972-986.
Yamashita, M.; Fenn, J. B.; J. Phys. Chem. 1984, 88 4451-
4459.
5. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985,
57,2935-2939.Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60,
2299-2301.
6. Berkel, G. J. V.; Glish, G. L.; McLuckey, S. A. Anal. Chem.
1990, 62, 1284-1295
7. Cai, Y.; Peng, W. —P.; Kuo, S. —J.; Chang, H.-C. Int. J.
Mass Spectrom. 2002, 214, 63-73.
8. Wuerker, R. F.; Shelton, H.; Langmuir, R. V. J. Appl. Phys.
1959, 30, 342-349.
9. Cai, Y.; Peng, W. —P.; Kuo, S. —J.; Lee, Y. T.; Chang, H.-
C. Anal Chem. 2002, 74, 232-238.
10. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.;
Whitehouse, C. M. Sci, 1989, 246, 64-71. Kebarle, P.; Tang,
L. Anal. Chem. 1993, 65, 972-986
11. Schreiner, J.; Voigt, C.; Mauersberger, K.; McMurry, P.;
Ziemann, P. Aerosol Sci. Technol. 1998, 29, 50-56.
12. Yoshinari K. Rapid Commun. Mass Spectrom. 2000, 14, 215-
223.
13. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of
Light by Small Particles; Wiley: New York, 1983.
14. Hunter, R. J. Foundations of colloid science; Clarendon
Press: OXFORD, 1986; Vol I; p15815.
16. Schlemmer, S.; Illemann, J.; Wellert, S.; Gerlich, D. J.
Appl. Phys., submitted.
17. Hars, G.; Tass, Z. J. Appl. Phys. 1995, 77, 4245-4250
18. Hunter, E. P. L.; Lias, S. G. J. Phys. Chem. Ref. Data
1998, 27, 413-656.
19. Dahneke, B. Nat. Phys. Sci. 1973, 244, 54-55.
20. March, R. E.; Hughes, R. J. Quadrupole Storage Mass
Spectrometer; Wiley: New York, 1989.
21. McLuckey, S. A.; Wells, J. M.; Stephenson, J. L., Jr.
Int.J. Mass Spectrom. 2000, 200, 137-16.
22. Edwards, D. F.; Philipp, H. R. In Handbook of Optical
Constants of Solids; Polik, E. D., Ed.; Academic Press: New
York, 1985.
23. Bancroft, F. C.; Freifelder, D. J. Mol. Biol. 1970, 54, 537-
546.
Dubin, S. B.; Benedek, G. B.; Bancroft, F. C.; Freifelder,
D. J. Mol. Biol. 1970, 54, 547-556.
24. Berkenkamp, S.; Kirpekar, F.; Hillenkamp, F. Sci. 1998,
281, 260-262.
25. Schriemer, D. C.; Li, L. Anal. Chem. 1996, 68, 2721-2725.
26. Fuerstenau, S. D.; Benner, W. H. Rapid Commun. Mass
Spectrom. 1995, 9, 1528-1538.
27. Taylor, J. R.; Fang, M. M.; Nie, S. Anal. Chem. 2000, 72,
1979-1986.
28. Cai, Y.; Peng, W. —P.; Kuo, S. —J.; Chang, H. H.; Chang,
H.-C. Anal. Chem., in press.
29. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985,
57, 2935-2939. Karas, M.; Hillenkamp, F. Anal. Chem. 1988,
60, 2299-2301
30. March, R. E.; Hughes, R. J.; Quadrupole Storage Mass
Spectromer; Wiley: New York, 1989, Chap. 2.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top