﹝1﹞Montgomery, D.R. and Brandon, M.T., “Topographic controls on erosion rates in tectonically active mountain ranges”, Earth and Planetary Science Letters, Vol. 201, pp. 481-489, 2002.
﹝2﹞Montgomery, D.R., “Slope Distributions, Threshold Hillslopes, and Steady-state Topography”, American Journal of Science, Vol. 301, pp. 432-454, 2001.
﹝3﹞Skinner, B.J. and Porter, S.C., Physical Geology, John Wiley and Sons Incorporation, New York, 1987.
﹝4﹞Korup, O., Clague, J.J., Hermanns, R.L., Hewitt, K., Strom, A.L. and Weidinger, J.T., “Giant landslides, topography, and erosion”, Earth and Planetary Science Letters, Vol. 261, pp. 578-589, 2007.
﹝5﹞Schmidt, K.M. and Montgomery, D.R., “Limits to relief”, Science, Vol. 270, pp. 617-620, October 1995.
﹝6﹞Bigot-Cormier, F. and Montgomery, D.R., “Valles Marineris landslides: Evidence for a strength limit to Martian relief?”, Earth and Planetary Science Letters, Vol. 260, pp. 179-186, 2007.
﹝7﹞Schultz, R.A., “Stability of rock slopes in Valles Marineris, Mars”, Geophysical Research Letters, Vol. 29(19), 2002.
﹝8﹞Moon, B.P. and Selby, M.J., “Rock Mass Strength and Scarp Forms in Southern Africa”, Geografiska Annaler, Series A, Physical Geography, Vol. 65, pp. 135-145, 1983.
﹝9﹞Haines, A. and Terbrugge, P.J., “Preliminary estimation of rock slope stability using rock mass classification systems”, 7th International Congress International Society Rock Mechanics, Vol. 2, pp. 887-892, Aachen, Germany, 1991.
﹝10﹞Duran, A. and Douglas, K., “Do slopes designed with empirical rock mass strength criteria stand up?”, 9th International Congress International Society Rock Mechanics, Vol. 1, pp. 87-90, Paris, France, 1999.
﹝11﹞Culmann, C., Die graphische static, Meyer and Zeller, Zurich, Switzerland, 1875.
﹝12﹞Schmidt, K.M., “Mountain Scale Strength Properties, Deep-Seated Landsliding, and Relief Limits”, University of Washington, Master thesis, 1994.
﹝13﹞Hoek, E. and Bray, J.W., Rock Slope Engineering, Institute of Mining and Metallurgy, London, 1977.
﹝14﹞Suppe, J., “Mechanics of mountain building and metamorphism in Taiwan”, Memoir of the Geological Society of China, Vol. 4, pp. 67-89, October 1981.
﹝15﹞Li, Y.H., “Denudation of Taiwan island since the Pliocene epoch”, Geology, Vol. 4, pp. 105-107, February 1976.
﹝16﹞Seno, T., “The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate”, Tectonophysics, Vol. 42, pp. 209-226, 1977.
﹝17﹞李春明,「以岩體分類探討非構造性控制破壞之岩坡最陡安全開挖坡度」,國立中央大學,碩士論文,2004年。﹝18﹞蘇意筑,「利用坡高與坡角反衍岩體強度」,國立中央大學,碩士論文,2011年。﹝19﹞Fellinius, W., “Calculations of stability of earth dams”, 2nd Congress of Large Dams, Washington D.C., 1936.
﹝20﹞Bishop, A.W., “The use of the slip circle in the stability analysis of slopes”, Geotechnique, Vol. 5, pp. 7-17, 1955.
﹝21﹞Janbu, N., “Application of composite slip surface for stability analysis”, European Conference on Stability of Earth Slopes, Stockholm, Sweden, 1954.
﹝22﹞Spencer, E., “A method of analysis of stability of embankments assuming parallel inter-slice forces”, Geotechnique, Vol. 17, pp. 11-26, 1967.
﹝23﹞Morgenstern, N.R. and Price, V.E., “Analysis of stability of general slip surfaces”, Geotechnique, Vol. 15, pp. 70-93, 1965.
﹝24﹞Terzhagi, K., Mechanism of landslides, Application of geology to engineering practice, Paige, S., Geological Society of America, New York, 1950.
﹝25﹞Jibson, R.W., “Methods for assessing the stability of slopes during earthquakes—A retrospective”, Engineering Geology, Vol. 122, pp. 43-50, 2011
﹝26﹞劉坤松、蔡義本和辛在勤,「台灣淺源地震強震地動衰減關係式之研究」,1999中國地球物理學會成果發表會論文集,1999年。
﹝27﹞Bard, P.Y., “Diffracted waves and displace field over two-dimensional elevated topographies”, Geophysical Journal of the Royal Astronomical Society, Vol. 71, pp. 731-760, 1982.
﹝28﹞Choi, Y., Stewart, J.P. and Graves, R.W., “Empirical Model for Basin Effects Accounts for Basin Depth and Source Location”, Bulletin of the Seismological Society of America, Vol. 95(4), pp. 1412-1427, 2005.
﹝29﹞Keefer, D.K., “Landslides Caused by Earthquakes”, Geological Society of America Bulletin, Vol. 95, pp. 406-421, 1984.
﹝30﹞Athanasopoulos, G.A., Pelekis, P.C. and Leonidou, E.A., “Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake”, Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 135-149, 1999.
﹝31﹞Jibson, R., Summary of research on the effects of topographic amplification of earthquake shaking on slope stability, US Geological Survey, Open-file Report 87-268, Menlo Park, California, 1987.
﹝32﹞Meunier, P., Hovius, N. and Haines, J.A., “Topographic site effects and the location of earthquake induced landslides”, Earth and Planetary Science Letters, Vol. 275, pp. 221-232, 2008.
﹝33﹞Seed, H.B., “Considerations in the earthquake-resistant design of earth and rockfill dams”, Geotechnique, Vol. 29, 215-263, 1979.
﹝34﹞Marcuson, W.F., “Moderator''s report for session on Earth Dams and Stability of Slopes under Dynamic Loads”, International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 1175, university of Missouri, Saint Louis, 1981.
﹝35﹞Hynes-Griffin, M.E. and Franklin, A.G., Rationalizing the Seismic Coefficient Method, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1984.
﹝36﹞Sarma, S.K., “Seismic Stability of Earth Dams and Embankments”, Geotechnique, Vol. 25(4), pp. 743-761.
﹝37﹞Kramer, S.L., Geotechnical earthquake engineering, Prentice-Hall, New jersey, 1996.
﹝38﹞US Army Corps of Engineers, Engineering and design of retaining and flood walls, 1989.
﹝39﹞Indian Institute of Technology Kanpur and Gujarat State Disaster Mitigation Authority, Guidelines for seismic design of earth dams and embankments, 2005.
﹝40﹞Gazetas, G., Dakoulas, P. and Dennehy, K., “Empirical seismic design method for waterfront anchored sheetpile walls”, Proceedings of the ASCE specialty conference on design and performance of earth retaining structures, Vol. 25, pp. 232-250, 1990.
﹝41﹞Kavazanjian, E., “Hanshin Earthquake-Reply”, Geotechnical Bulletin Board, NSF Earthquake Hazard Mitigation Program, February, 1995.
﹝42﹞Ling, H.I. and Leshchinsky, D., “Effects of vertical acceleration on seismic design of geosynthetic-reinforced soil structures”, Geotechnique, Vol. 48(3), pp. 347-373, 1998.
﹝43﹞Hoek, E. and Brown, E.T., Underground Excavations in Rock, pp. 527, Institution of Mining and Metallurgy, London, 1980.
﹝44﹞Hoek, E. and Brown, E.T., Empirical strength criterion for rock masses, Journal of the Geotechnical Engineering Division, Vol. 106(GT9), pp. 1013-1035, 1980.
﹝45﹞Hoek, E., Rock Mechanics in Engineering Practice, pp. 99-124., Stagg, K.G. and Zienkiewicz, O.C., John Wiley, London, 1968.
﹝46﹞Brown, E.T., “Strength of models of rock with intermittent joints”, Journal of the Soil Mechanics and Foundations Division, Vol. 96(SM6), pp. 1935-1949., 1970.
﹝47﹞Hoek, E. and Brown, E.T., “The Hoek-Brown failure criterion - a 1988 update”, 15th Canadian Rock Mechanics Symposium, pp. 31-38., Department of Civil Engineering, University of Toronto, Toronto, 1988.
﹝48﹞Bieniawski, Z.T., Exploration for rock engineering, Vol. 1, pp.97-106, AA Balkema, Rotterdam, 1976.
﹝49﹞Hoek, E., Wood, D. and Shah, S. “A modified Hoek-Brown criterion for jointed rock masses”, ISRM Symposium, pp. 209-214, British Geotechnical Society, London, 1992.
﹝50﹞Hoek, E., “Strength of rock and rock masses”, ISRM News Journal, Vol. 2(2), pp.4-16, 1994.
﹝51﹞Hoek, E., Kaiser, P.K. and Bawden, W.F., Support of Underground Excavations in Hard Rock, Balkema, Rotterdam, 1995.
﹝52﹞Hoek, E., Carranza-Torres, C. and Corkum, B., “Hoek–Brown failure criterion – 2002 edition”, 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference, vol. 1, pp. 267-273, University of Toronto, Toronto, 2002.
﹝53﹞Hoek, E. and Marinos, P., “A brief history of the development of the Hoek–Brown failure criterion”, Soils and Rocks, No. 2, 2007.
﹝54﹞Marinos, P. and Hoek, E., “Estimating the geotechnical properties of heterogeneous rock masses such as flysch”, Bulletin of Engineering Geology and the Environment, Vol. 60(2), pp. 85-92, 2001.
﹝55﹞Bieniawski, Z.T., “Engineering classification of jointed rock masses”, Civil Engineer in South Africa, Vol. 15, pp. 353-343, 1973.
﹝56﹞Barton, N., Lein, R. and Lunde, J., “Engineering classification of rock masses for the design of tunnel support”, Rock Mechanics, Vol. 6, pp. 189-236, 1974.
﹝57﹞Bieniawski, Z.T., Engineering rock mass classifications, John Wiley and Sons, New York, 1989.
﹝58﹞Hoek, E., Marinos, P. and Benissi, M., “Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens schist formation”, Bulletin of Engineering Geology and the Environment, Vol. 57(2), pp. 151-160, 1998.
﹝59﹞Marinos, P and Hoek, E., “GSI: a geologically friendly tool for rock mass strength estimation”, International Conference on Geotechnical & Geological Engineering, pp. 1422-1442, Melbourne, 2000.
﹝60﹞Hoek, E., Marinos, P. and Marinos V., “Characterization and engineering properties of tectonically undisturbed but lithologically varied edimentary rock masses”, International Journal of Rock Mechanics and Mining Sciences, Vol. 42(2), pp. 277-285, 2005.
﹝61﹞Marinos, P., Hoek, E. and Marinos V., “Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling”, Bulletin of Engineering Geology and the Environment, Vol. 65(2), pp. 129-142, 2006.
﹝62﹞Marinos, P., Marinos V. and Hoek, E., “The geological Strength index: applications and limitations”, Bulletin of Engineering Geology and the Environment, Vol. 64, pp. 55-65, 2005.
﹝63﹞Sonmez, H. and Ulusa R., “Modifications to the geological strength index (GSI) and their applicability to stability of slopes”, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp. 743-760, 1999.
﹝64﹞Cai, M, Kaiser, P.K., Uno, H., Tasaka, Y. and Minami, M., “Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system”, International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 3-19, 2004.
﹝65﹞Tzamos, S. and Sofianos, A.I., “A correlation of four rock mass classification systems through their fabric indices”, International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp. 477-495, 2007.
﹝66﹞Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Vienna, 1925.
﹝67﹞Harr, M. E., Groundwater and Seepage, McGraw-Hill, New York, 1962.
﹝68﹞Lambe, T.W. and Silva-Tulla, F., “Stability analysis of an earth slope”, Stability and Performance of Slopes and Embankments-II, University of California, Berkeley, California, pp. 27-67, 1992.
﹝69﹞Jibson, R.W., “Use of landslides for paleoseismic analysis”, Engineering Geology, Vol. 43, pp. 291-323, 1996.
﹝70﹞Longpre, M.A., Del Potro, R., Troll, V.R., Nicoll, G.R., “Engineering geology and future stability of the El Risco landslide, NW-Gran Canaria, Spain”, Bulletin of Engineering Geology and the Environment, Vol. 67, pp. 165-172, 2008.
﹝71﹞Wechsler, N., Katz, O., Dray, Y., Gonen, I., Marco, S., “Estimating location and size of historical earthquake by combining archaeology and geology in Umm-El-Qanatir, Dead Sea Transform”, Natural Hazards, Vol. 50, pp. 27-43, 2009.
﹝72﹞El-Ramly, H., Morgenstern, N. R. and Cruden, D. M., “Probabilistic assessment of stability of a cut slope in residual soil”, Geotechnique, Vol. 55(1), pp. 77-84, 2005.
﹝73﹞Voight, B., Janda, R.J., Glicken, H. and Douglass, P. M., “Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980”, Geotechnique, Vol. 33, pp. 243-273, 1983.
﹝74﹞陳榮河,「邊坡穩定之分析方法」,地工技術,第十七期,70-84頁,1987年。﹝75﹞ASTM, “Standard practices for preparing rock core as cylindrical test specimens and verifying conformance to Dimensional and shape tolerances”, D4543, 2008.
﹝76﹞ASTM, “Standard test method for unconfined compressive strength of intact rock core specimens”, D2938, 2005.
﹝77﹞Bieniawski, Z.T., Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering, Wiley Interscience, New York, 1989.
﹝78﹞Palmstrom, A., “Measurements of and Correlations between Block Size and Rock Quality Designation (RQD)”, Tunnels and Underground Space Technology, Vol. 20, pp. 362-377, 2005.
﹝79﹞Palmstrom, A., “RMi – a rock mass characterization system for rock engineering purposes”, University of Oslo, PhD thesis, 1995.
﹝80﹞楊哲銘,「非線性破壞準則之臨界楔模型」,國立中央大學,碩士論文,2009年。﹝81﹞Palmstrom, A., “Collection and use of geological data in rock engineering”, ISRM News Journal, pp. 21-25, 1997.
﹝82﹞劉桓吉、李錦發和紀宗吉,五萬分之一臺灣地質圖說明書(圖幅第38號:雲林),第二版,2004年。
﹝83﹞經濟部中央地質調查所:地質資料整合查詢,取自http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm。
﹝84﹞經濟部中央地質調查所:坡地岩體工程特性調查研究(瑞竹圖幅),取自http:// envgeo.moeacgs.gov.tw/moeapaper/rock/95203ne.htm#
﹝85﹞Chen, W.S., Chen, Y.G., and Cheng, H.C., “Paleoseismic study of the Chelungpu fault in the Mingjian area”, Western Pacific Earth Sciences, Vol. 1(3), pp. 351-358, August, 2001.
﹝86﹞Chen, W.S., Chen, Y.G., Cheng, H.C., Lee, Y.H. and Lee, J.C., “Paleoseismic study of the Chelungpu fault in the Wanfung area”, Western Pacific Earth Sciences, Vol. 1(4), pp. 499-506, November, 2001.
﹝87﹞Lin, A., Chen, A., Ouchi, T. and Maruyama, T., “Geological evidence of Paleo-seismic events occurred along the Chelungpu fault zone, Taiwan”, TAO, Vol. 14(1), pp. 13-26, 2003.
﹝88﹞中興工程顧問股份有限公司,湖山水庫工程計畫 大壩工程細部規劃報告,經濟部水利署中區水資源局,2006年。
﹝89﹞Lin, P.S., Lee, C.T., Cheng, C.T. and Sung, C.H., “Response spectral attenuation relations for shallow crustal earthquakes in Taiwan”, Engineering Geology, Vol. 121, pp. 150-164, 2011.
﹝90﹞Pacific Earthquake Engineering Research Center:PEER Ground Motion Database, http://peer.berkeley.edu/peer_ground_motion_database.
﹝91﹞Wald, D.J., Quitoriano, V., Heaton, T.H. and Kanamori, H. “Relationship between peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity for earthquakes in California”, Earthquake Spectra, Vol. 15(3), pp. 557-564, 1999.
﹝92﹞Yagoda-Biran, G., Hatzor, Y.H., Amit, R. and Katz, O., “Constraining regional paleo peak ground acceleration from back analysis of prehistoric landslides: Example from Sea of Galilee, Dead Sea transform”, Tectonophysics, Vol. 490, pp. 81-92, 2010.
﹝93﹞Brune, J.N., “Precariously balanced rocks and ground-motion maps for Southern California”, Bulletin of the Seismological Society of America, Vol. 86, pp. 43-54, 1996.
﹝94﹞Kamai, R. and Hatzor, Y.H., “Numerical analysis of block stone displacements in ancient masonry structures: a new method to estimate historic ground motions”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, pp. 1321-1340, 2008.
﹝95﹞Yagoda-Biran, G. and Hatzor, Y.H., “Constraining paleo PGA values by numerical analysis of overturned columns”, Earthquake Engineering and Structural Dynamics, Vol. 39, pp. 463-472, 2010.
﹝96﹞Szeidovitz, G., Suranyi, G., Gribovszki, K., Bus, Z., Leel-Őssy, S., Varga, Z., “Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in Hungarian caves”, Journal of Seismology, Vol. 12, pp. 21-33, 2008.