|
Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewish, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., and Staudt, L.M. (2000) Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling. Nature, 403, 503-511. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Lvine, A.J. (1999) Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proceedings of the National Academy of Sciences, 96, 6745-6750. Baker, K., Harris, P. and O’Brien, J. (1989) Data Fusion: An Appraisal and Experimental Evaluation. Journal of the Market Research Society, 31 (2), 152-212. Bäck, T. (1996) Evolutionary algorithm in theory and practice. Oxford University Press, New York, USA. Bechhofer, R.E. and Tamhane, A.C. (1981) Incomplete Block Designs for Comparing Treatments With a Control: General Theory. Technometrics, 23, 45-57. Ben-Dor, A., Shamir, R., and Yakhini, Z. (1999) Clustering Gene Expression Patterns. Journal of Computational Biology, 6, 281-297. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M. and Yakhini, Z. (2000) Tissue Classification with Gene Expression Profiles. Journal of Computational Biology, 7, 559-583. Bioshop, C. (1995). Neural networks for pattern recognition. Oxford University Press, New York. Blum, A. and Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97, 245-271. Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978) Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. New York: Wiley. Brown, P.O. and Botstein, D. (1999) Exploring the New World of the Genome with DNA Microarrays. Nature Genetics, 21(1 Suppl), 33-37. Burges, C. J. C. (1998) A tutorial on Support Vector Machined for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167. Cartes, C. and Vapnik, V. (1995) Support vector machines. Machine Learning, 20, 273-297. Chang, C. C. and Lin, C. J. (2001) LIBSVM : a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Cheng, C.-S. and Bailey, R.A. (1991) Optimality of Some Two-Associate-Class Partially Balanced Incomplete-Block Designs. Annals of Statistics, 19, 1667-1671. Chu, P. C. (1998) A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heuristics, 4, 63-86. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Bostein, D., Brown, P.O., and Hershkowitz, I. (1998) The Transcriptional Program of Sporulation in Budding Yeast. Science, 282, 699-705. Chuang, H. Y., Tsai, H. K., Tsai, Y. F., and Kao, C. Y. (2003) Ranking genes for discriminability on Microarray Data. Journal of Information Science and Engineering, to appear. Churchill, G. A. (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genetics Supplement, 32, 490-495. Cox, D. R. (1958) Planning of Experiments. New York: Wiley. Dandekar, T. and Argos, P. (1994) Folding the main chain of small proteins with the genetic algorithm. Journal of Molecular Biology, 236, 844- 861. Davis, L. (1991) Handbook of Genetic Algorithm. Van Nostrand Reinhold, New York. DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997) Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science, 278, 680-686. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Clustering analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95, 14863-14868. Fisher, R.A. (1926) The arrangement of field experiments. J. Min. Agric. Gr. Br., 33, 503-513. Fogel, D. B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine Intelligent. NJ: IEEE Press, Piscataway. Furey, T.S., Duffy, N., Cristianini, N., Bednarski, D., Schummer, M., Haussler, D. (2000) Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics, 16 (10), 906-914. Giun, C.M.R., Willett, P. and Bradshaw, J. (2000) Combination of Molecular Similarity Measures Using Data Fusion, Perspectives in Drug Discovery and Design. Kluwer/ESCOM, 20, 1-16. Goldberg, D. E. (1989) Genetic algorithms in search, optimization & machine learning. Reading, MA: Addison-Wesley. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and Lander, E.S. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537. Hall, M.A. and Smith, L.A. (1998) Practical feature subset selection for machine learning. In McDonald,C. (ed.), Proceedings of Australasian Computer Science Conference. Springer, Singapore, 181—191. Harris, P. and Baker, K. (1998). Data Fusion. Admap, June 1998 Hart, W. E. (1994) Adaptive global optimization with local search. PhD thesis, University of California, San Diego. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2003) Maximum likelihood estimation of optimal scaling factors for expression array normalization. http:// www.psrg.lcs.mit.edu. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A. and Trent, J. (2001) Gene-expression profiles in hereditary breast cancer. New England J. Med., 8, 344-539. Hettemansperger, T. P. (1984) Statistical Inference based on ranks. Wiley, New York. Heydermann, M.C. (1997) Cayley graphs and interconnection networks. Graph Summetry, 161-224. Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999) Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research, 9, 1106-1115. Holland, J. (1975) Adaptation in Neural and Artificial Systems. University of Michigan Press, Ann Arbor. Hsu, D.F., Shapiro, J. and Taksa, I. (2002) Methods of Data Fusion in Information Retreival: Rank vs. Score Combination. DIMACS Technical Report, 58. Jaeger, J., Sengupta, R., and Ruzzo, W.L. (2003) Improved gene selection for classification of microarrays. Pacific Symposium on Biocomputing, 8, 53-64. Kerr, M. K. and Churchill, G. A. (2001a) Experimental design for gene expression microarrays. Biostatistics, 2, 183-201. Kerr, M. K. and Churchill, G. A. (2001b) Statistical design and the analysis of gene expression microarrays. Genetic Research, 77, 123-128. Kohavi, R. and John, G. (1979) Wrapper for feature subset selection. Artificial Intelligence, 97, 273-324. Langley, P. (1994) Selection of relevant features in machine learning. Proceedings of the AAAI Fall Symposium on Relevance. AAAI Press. Lazzeroni, L. and Owen, A. (2000) Plaid Models for Gene Expression Data. Technical Report 211, Department of Biostatistics, Stanford University. Lee, M.—L. T., Lu, W., Whitmore, G.A., and Beier, D. (2001) Models for microarray gene expression data. preprint. Li, L., Weinberg, C.R., Darden, T.A. and Pedersen, L.G. (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17, 1131—1142. Little, R.J.A. and Rubin, D.B. (1987) Statistical analysis with missing data. Wiley, New York. Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. and Brown, E.L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Natrue Biotechnology, 14, 1675-1680. Marden, J.I. (1995) Analysing and Modeling Rank Data. Chapman & Hall. Massart, D.L., Vandeginste, B.G.M., Deming, S.N., Michotte, Y., and Kaufman, L. (1998) The k-nearest neighbor method. In Chemometrics: a textbook (Data Handling in Science and Technology, vol 2), Elsevier Science B. V: New York, 395-397. Ng, K.B. and Kantor, P.B (2000) Predicating the effectiveness of Naïve Data Fusion on the basis of system characteristics. JASIS, 51, 1177-1189. Notterman, D. A., Alon, U., Sierk, A. J., and Levine, A. J. (2001) Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays. Cancer Research, 61, 3124—3130. Ooi, C.H. and Tan, P. (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 19, 37-44. Park, P. J., Pagano, M., and Bonetti, M. (2001) A Nonparametric Scoring Algorithm for Identifying Informative Genes from Microarray Data. Pacific Symposium on Biocomputing, 6, 52-63. Perou, C.M., Jeffrey, S.S., Van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F, Zhu, S.X., Lee, J.C.F., Lashkari, D., Shalon, D., Brown, P.O., and Botstein, D. (1999) Distinctive Gene Expression Patterns in Human Mammary Epithelial Cells and Breast Cancers. Proceedings of the National Academy of Sciences, 16, 9212-9217. Pollack, R., Perou, C. M., Alizadeh, A.A., Eisen, M.B., Pergamenschikov, A., Williams, C.F., Jeffrey, S.S., Botstein, D. and Brown, P.O. (1999) Genome-wide analysis of dna copy-number changes using cdna microarrays. Nature Genetics, 23, 41-46. Raghavarao, D. (1971) Constructions and Combinatorial Problems in Design of Experiments. New York: Wiley. Rechenberg, I. (1973) Optimierung Technischer Nach Prinzipien der Biologischen Information. Frommann Verlag, Stuttgrat. Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V., Je_rey, S.S., Van deRijn, M., Waltham, M., Pergamenschikov, A., Lee, J.C.F., Lashkari, D., Shalon, D., Myers, T.G., Weinstein, J.N., Botstein, D., Brown P. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24, 227-235. Schena, M., Shalon, D., Davis, R.W., and P.O. Brown (1995) Quantitative monitoring of gene expression patterns with a complementary dna microarrays. Science, 270, 467-470. Schena, M. editor (1999) DNA Microarrays : A Pratical Approach. Oxford University Press. Schwefel, H. P. (1977) Numerische Optimierung von Compuer-Moddellen Mittels der Evolution-sstrategie. Birhhäuser, Basel. Shah, K.R. and Sinha, B.K. (1989) Theory of optimal designs. Springer-Verlag, New York. Slonim, D.K. (2002) From patterns to pathways: gene expression data analysis comes of age. Nature Genetics, 32, 502-508. Snedecor, G.W. and Cochran, W.G. (1989) Statistical Methods, Eighth Edition. Iowa State University Press. Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N., Mesirov, J.P., Lander, E.S., and Golub, T.R. (2001) Chemosensitivity prediction by transcriptional profiling. PNAS, 98, 10787—10792. Stefensson, A., Koncar, N., and Jones, A.J. (1997) A Note on the Gamma Test. Neural Comput. Applic., 5, 131-133. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Smitrovsky, E., Lander, E., and Golub, T.R. (1999) Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation. Proceedings of the National Academy of Sciences, 96, 2907-2912. The Chipping Forecast (1999). Supplement to Nature Genetics, 21, 1-60. Tsai, H. K., Yang, J. M., and Kao, C. Y. (2003) Entropy Selection Genetic Algorithms for Traveling Salesman Problems. Engineering Optimization, to appear. Vapnik, V. (1999) Statistical Learning Theory. John Wiley & Sons, New York. Vogt, C.C. and Cotrell, G.W. (1999) Fusion via a linear combination of scores, Info. Ret., 1, 151-172. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V. (2001) Feature selection for SVMs. In Advances in Neural Information Processing Systems, volume 13. MIT Press, Cambrige, MA. In press. Xu, L., Krzyzak, A., and Suen, C.Y. (1992) Method of Combining Multiple Classifiers and their Application to Handwriting Recognition. IEEE Trans SMC, 22, 418-435. Yang, J. M. (2001) A Family Competition Evolutionary Approach of Global Optimization in Neural Networks, Optical Thin-film Design, and Structure-based Drug Design. Ph. D. thesis, National Taiwan University, Taiwan. Yang, Y. H. and Speed, T. (2002) Design issue for cDNA microarray experiments. Nature Reviews, 3, 579-588. Yen, J., Yip, J. C., and Pao, Y. H. (1998) Combinatorial optimization with use of guided evolutionary simulated annealing. IEEE Transactions on Systems, Mans, and Cybernetics —Part B, 28(2), 173-191. Yeung, K. Y. and Ruzzo, W. L. (2001) Principal component analysis for clustering gene expression data. Bioinformatics, 17, 763-774. Youden, W.J. (1969) In Precision Measurement and Calibration: Statistical Concepts and Procedures. Special Publication 300, National Bureau of Standards, United States Department of Commerce, Washington, D.C., 1, 146-151. Zhang, H., Yu, C.Y., Singer, B. and Xiong, M. (2001) Recursive partitioning for tumor classification with gene expression microarray data. PNAS, 98, 6730—6735.
|