跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何怡滿
論文名稱:重設型認購權證的特性、評價與實證
論文名稱(外文):Reset Warrants: Properties, Valuation and Empirical Tests
指導教授:許溪南許溪南引用關係
學位類別:博士
校院名稱:國立成功大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:113
中文關鍵詞:重設型認購權證蒙地卡羅模擬法特性評價價格差異
外文關鍵詞:reset warrantsMonte Carlo simulationpropertiesvaluationprice difference
相關次數:
  • 被引用被引用:3
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:4
近年來在選擇權市場上,路徑相依選擇權的發展相當快速,這類選擇權的主要特點在於,其報償結構與標的資產在選擇權存續期間中的價格路徑直接相關。重設選擇權屬於路徑相依選擇權之一,倘若在重設期間當中(或重設日當天),該買權(賣權)的標的資產價格滿足重設條件,則此買權(賣權)的履約價可被重設至一個較低(較高)的價格。
在民國87年10月22日,大華證券股份有限公司發行了國內第一個美式重設型認購權證。由於重設型認購權證不僅在國內屬於新的衍生性金融商品,即使在其他國家亦是推出歷史尚短,迄今探討其特性與評價方法之相關文獻仍不多見。本研究以八種重設型認購權證作為分析對象,首先探討重設型認購權證的特性,並加以證明。然後以蒙地卡羅模擬法求算各類型重設型認購權證的價格,並分析不同重設條件對重設型認購權證價格的影響。最後,本研究進行實證分析,探討重設型認購權證模式價與市價的差異情形。研究目的分述如下:
1.重設型認購權證具有重設條件,當重設條件改變時,會影響重設型認購權證的價格。因此,本研究探討並證明重設型認購權證的各項特性,分析重設條件與重設型認購權證價格的關係。
2.重設型認購權證具有重設條件,且重設條件變化多端,使得其評價過程較為複雜與困難,至今尚難以導出封閉式解。由於蒙地卡羅模擬法適合用來處理較複雜之報償結構,故本研究使用蒙地卡羅模擬法來求解各類型重設型認購權證的價格。
3.為瞭解重設型認購權證模式價與市價之間的差異情形,在計算模式價格時,本研究分別以「上市前半年的股價報酬標準差」,以及「前60日移動平均標準差」來估計標的股價波動性。然後採用成對t檢定來檢測重設型認購權證模式價與市價之間的差異是否顯著。倘若有顯著差異存在,則進一步以迴歸分析找出造成差異的原因。
本文之研究結果歸納如下:
1. 對於單層重設價之重設型認購權證而言,存在一個最適的重設價格,使得重設型認購權證的價格為最大。
2. 對於設有特定重設日之重設型認購權證而言,在合理的利率水準之下,存在一個最適的重設日,使得重設型認購權證的價格為最高。
3. 對於設有重設期間之重設型認購權證而言,重設期間愈長,重設機率愈高,重設型認購權證的價格愈高。
4. 對於多層重設價之重設型認購權證而言,允許重設次數愈多,重設型認購權證的價格愈高。
5. 對於移動平均價重設型認購權證而言,均價日數愈長,重設機率愈低,重設型認購權證的價格愈低。
6. 對於設有重設價格下限的特定日連續價或單期連續價重設型認購權證而言,重設價格下限愈低,重設型認購權證的價格愈高。
7. 由模式價與市價的成對t檢定結果得知,重設型認購權證在重設期間內(或重設日之前),其模式價與市價之間有顯著差異存在。
8. 由迴歸分析結果發現,價內比率的程度會影響重設型認購權證模式價與市價的差異情形,且較支持負向影響,亦即愈是價內(外)的重設型認購權證,其價格差異程度愈低(高)。
9. 從迴歸分析結果發現,距到期日期間對於重設型認購權證模式價與市價差異的影響方向並不一致,但以負向居多,亦即較為支持距到期日愈遠(近),價格差異情形愈小(大)。
Path-dependent options have become increasingly popular in recent years. A path-dependent option has a payoff directly related to movements in the price of the underlying asset during the option’s life. Reset options are one type of path-dependent options. If the reset option satisfies some reset conditions during the reset period, its strike price may be reset to a lower strike in the case of a call or a higher strike in the case of a put.
In Taiwan, the first American-style reset warrant was issued by Grand Cathay Securities Co., Ltd. on 22 October 1998. The reset warrant is a new derivative security in Taiwan. It is also a new financial product for other countries. So the related literature is rare. This paper focuses on valuing eight kinds of reset warrants. First, some important properties of reset warrants are investigated and proven. Secondly, the Monte Carlo simulation method is used to calculate the prices and the reset probabilities for each kind of reset warrants under different reset conditions. Finally, this paper attempts to empirically examine the price differences between model prices and market prices of reset warrants. The purposes of this paper are summarized as follows:
1. As the reset condition changes, the price of the reset warrant and the reset probability also change. This paper investigates and proves the properties of reset warrants. The relationship between reset conditions and the price of reset warrants are examined.
2. Because of the diversity of reset conditions, the valuing process of reset warrants is very complicated and difficult. A closed-form solution might not be easy to obtain. The Monte Carlo simulation is very convenient and flexible for valuing path-dependent options. Thus, this paper uses the Monte Carlo simulation method to calculate the prices for each kind of reset warrants.
3. This paper uses “the standard deviation of stock returns in the last half-year before listed date” and “the sixty-days moving-average standard deviation” to measure stock volatility. Then, it adopts paired t test to investigate the price differences between model prices and market prices of reset warrants. If there exists significant price differences between model prices and market prices, regression analysis is further performed to identify the factors affecting the price differences.
The findings of this paper can be summarized as follows:
1. There exists an optimal reset strike price, such that the price of the warrant with a single specific reset price is at its maximum.
2. There exists an optimal reset date, such that the price of the warrant with a single specific reset date is at its maximum under reasonable interest rate.
3. As the reset period becomes longer, the price of the reset warrant and the reset probability increase.
4. If the number of times allowed for resetting increases, the price of the reset warrant increases.
5. As the number of days for calculating the moving-average price increases, the price of the reset warrant and the reset probability decrease.
6. As the lower limit of reset price decreases, the price of the warrant with a lower limit of reset strike price increases.
7. There is a strong evidence to support that model prices and market prices of reset warrants are different.
8. The price differences between model prices and market prices of reset warrants are influenced by the depth of in-the-money. For most sample warrants, the depth of in-the-money has a negative impact on price differences. That is, the price differences between model prices and market prices are smaller (larger) for reset warrants with deeper in-the-money (out-of-the money).
9. The price differences between model prices and market prices of reset warrants are influenced by the time to expiration. Some have positive effect but some have negative effect. For most sample warrants, the time to maturity has a negative effect on price differences. That is, as the time to maturity increases (decreases), the price differences between model prices and market prices decrease (increase).
封面
第一章 緒論
第一節 研究動機
第二節 研究目的
第三節 研究架構
第二章 文獻探討
第一節 標準型認購權證的評價方法
第二節 重設型認購權證評價的相關文獻
第三節 認購權證模式價與市價比較的相關文獻
第三章 重設型認購證的種類、特性與評價方法
第一節 重設型認購證的種類
第二節 重設型認購權證的特性
第三節 以蒙地卡羅模擬法評價重設型認購權
附錄A 特性十之數學證明
附錄B 特性十一之數學證明
附錄C 以蒙地卡羅模擬法評價移動平均價單期多價重設型認購權證之程式範例
第四章 重設型認購權證的評價
第一節 日收盤價特定日單價重設型認購權證的評價
第二節 特定日連續價重設型認購權證的評價
第三節 單期單價與單期多價重設型認購權證的評價
第四節 移動平均價單期連續價重設型認購權證的平均
第五章 重設型認購權證模式價與市場的比較
第一節 樣本選取與資料來源
第二節 重設型認購權證模式價與市價差異的檢定
第三節 重設型認購權證模式與市價差異的回歸分析
第六章 結論與建議
第一節 研究結論
第二節 研究建議
參考文獻
一、中文部分
1. 何怡滿與許溪南,2000,「臺灣股市認購權證定價之實證研究」,成功大學學報(人文•社會篇),第三十五卷,pp.55-70。
2. 李存修與林岳賢,1999,「重設選擇權之評價與避險操作」,中國財務學刊,第七卷第二期,pp.113-150。
3. 李怡宗,「認購(售)權證評價模式之論述」,1997,證券暨期貨管理,第十五卷第九期,pp.1-19。
4. 李怡宗、劉玉珍與李健瑋,1999,「Black-Scholes評價模式在台灣認購權證市場之實證」,管理評論,第十八卷第三期,pp.83-104。
5. 徐守德、官顯庭與黃玉娟,1998,「台股認購權證定價之研究」,管理評論,第十七卷第二期,pp.45-69。
6. 許溪南與何怡滿,1999,「利用投資組合保險的觀念求解選擇權的價格」,亞太管理評論,第四卷第四期,pp.357-367。
7. 許溪南與黃凱靖,1998,「股價分配對選擇權定價之影響」,亞太管理評論,第三卷第一期,pp.1-17。
8. 詹錦宏與洪啟安,1999,「台股認購權證價格形成的實證分析」,臺灣銀行季刊,第五十卷第二期,pp.56-84。
9. 中環股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國87年10月22日。
10. 中環股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國88年4月28日。
11. 日月光半導體股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國88年6月9日。
12. 日月光、中信銀普通股組合型重設認購權證公開銷售說明書,寶來證券股份有限公司,民國88年8月27日。
13. 「台塑+茂矽」證券組合重設型認購權證公開銷售說明書,京華證券股份有限公司,民國88年10月29日。
14. 「台塑+南亞+台化+福懋」組合型重設認購權證公開銷售說明書,富邦綜合證券股份有限公司,民國88年7月8日。
15. 台積電、聯電普通股組合認購權證公開銷售說明書,寶來證券股份有限公司,民國88年8月21日。
16. 台灣化學纖維股份有限公司普通股認購權證公開銷售說明書,元大證券股份有限公司,民國88年11月23日。
17. 「華新麗華+台積電」組合型多層重設認購權證公開銷售說明書,建弘證券股份有限公司,民國88年9月13日。
18. 聯華電子股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國88年5月27日。
19. 聯華電子股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國88年10月20日。
20. 「聯華電子+仁寶電腦」組合型多層重設認購權證公開銷售說明書,建弘證券股份有限公司,民國88年6月16日。
21. 「聯華電子+華邦電子」組合型重設認購權證公開銷售說明書,富邦綜合證券股份有限公司,民國88年8月18日。
22. 震旦行股份有限公司普通股認購權證公開銷售說明書,大華證券股份有限公司,民國88年6月14日。
二、英文部分
1. Ahn, D., S. Figlewski, and B. Gao, 1999, “Pricing Discrete Barrier Options with an Adaptive Mesh Model,” Journal of Derivatives, Vol.6, Summer, pp.33-43.
2. Barraquand, J. and D. Martineau, 1995, “Numerical Valuation of High Dimensional Multivariate American Securities,” Journal of Financial and Quantitative Analysis, September, pp.383-405.
3. Beckers, S., 1980, “The Constant Elasticity of Variance Model and Its Implications for Option Pricing,” Journal of Finance, pp.661-673.
4. Black, F. and M. Scholes, 1972, “The Valuation of Option Contracts and a Test of Market Efficiency,” Journal of Finance, May, pp.399-417.
5. Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, pp.637-659.
6. Boyle, P.P., 1977, “Options: A Monte Carlo Approach,” Journal of Financial Economics, pp.323-338.
7. Boyle, P.P., 1988, “A Lattice Framework for Option Pricing with Two State Variables,” Journal of Financial and Quantitative Analysis, Vol.23, pp.1-12.
8. Boyle, P.P. and S.H. Lau, 1994, “Bumping up Against the Barrier with the Binomial Method,” Journal of Derivatives, Summer, pp.6-14.
9. Boyle, P.P. and Y. Tian, 1999, “Pricing Lookback and Barrier Options under the CEV Process,” Journal of Financial and Quantitative Analysis, Vol.34, June, pp.241-264.
10. Chang, C., J.S.K. Chang, and K.G. Lim, 1998, “Pricing and Hedging Hong Kong Derivative Warrants in Information-Time,” May, The 1998 Chinese Finance Association Annual Conference Proceedings, pp.1-24.
11. Chang, C.-C. and S.-L. Chung, 1999, “Pricing and Hedging American-Style Moving-Average Reset Warrants,” The Eighth Conference on the Theories and Practices of Security and Financial Markets, National Sun Yat-Sen University, Kaohsiung, Taiwan.
12. Chang, W.-Y. and S. Zhang, 2000, “The Analytics of Reset Options,” Journal of Derivatives, fall, pp.59-71.
13. Chen, W.-K., 1999, “The Valuation and Hedging of Reset Options,” The 1999 Chinese Finance Association Annual Conference.
14. Cox, J. and S.A. Ross, 1976, “The Valuation of Options for Alternative Stochastic Processes,” Journal of Financial Economics, Vol.3, pp.145-166.
15. Cox, J., S.A. Ross, and M. Rubinstein, 1979, “Option Pricing:A Simplified Approach,” Journal of Financial Economics, Vol.7, pp.229-264
16. Cox, J. and M. Rubinstein, 1985, Options Markets, Prentice-Hall, Inc.
17. Gastineau, G., 1993, “An Introduction to Special-Purpose Derivatives: Path-Dependent Options,” Journal of Derivatives, Spring, pp.59-62.
18. Geske, R., 1979, “A Note on an Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividend,” Journal of Financial Economics, Vol.7, pp.375-380.
19. Geske, R. and R. Roll, 1984, “On Valuation American Call Options with the Black-Scholes European Formula,” Journal of Finance, Vol.39, pp.443-455.
20. Goldman, B., H. Sosin, and A. Gatto, 1979, “Path-Dependent Options: Buy at the Low, Sell at the High,” Journal of Finance, Vol.34, pp.1111-1127.
21. Grant, D., G. Vora, and D. Weeks, 1997, “Path-Dependent Options: Extending the Monte Carlo Simulation Approach,” Management Science, Vol.43, November, pp.1589-1602.
22. Gray, S.F. and R.E. Whaley, 1997, “Valuing S&P 500 Bear Market Warrants with a Periodic Reset,” Journal of Derivatives, Fall, pp.99-106.
23. Gray, S.F. and R.E. Whaley, 1999, “Reset Put Options: Valuation, Risk Characteristics, and an Application,” Australian Journal of Management, Vol.24, June, pp.1-20.
24. Gultekin, N.B., R.J. Rogalski, and S.M. Tinic, 1982, “Option Pricing Model Estimates: Some Empirical Results,” Financial Management, Vol.11, Spring, pp.58-69.
25. Hauser, S. and B. Lauterbach, 1997, “The Relative Performance of Five Alternative Warrant Pricing Models,” Financial Analyst Journal, January, pp.55-61.
26. Hsieh, M.H., K.H. Chang, and C.H. Hung, 1999, “Efficient Procedure for Valuing Covered Warrant with Reset Strike Price Features,” The Eighth Conference on the Theories and Practices of Security and Financial Markets, National Sun Yat-Sen University, Kaohsiung, Taiwan.
27. Hsu, Hsinan and Emily Ho, 1999, “The Valuation of American-Style Reset Warrants,” Chinese Finance Association Annual Conference.
28. Hsu, Hsinan and Emily Ho, 2000, “The Valuation of Taiwanese Reset Warrants: A Monte Carlo Approach,” Asia Pacific Journal of Finance, Vol.3, May, pp.27-51.
29. Hsueh, L.P. and B.H. Gou, 1998, “Reset Warrants: Design and Valuation,” Journal of Financial Studies, October, pp.1-18.
30. Hull, J., 1997, Options, Futures, and Other Derivatives, Prentice-Hall, Inc.
31. Hull, J. and A. White, 1987, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, Vol.3, pp.281-300.
32. Hull, J. and A. White, 1993, “Efficient Procedures for Valuing European and American Path-Dependent Options,” Journal of Derivatives, Fall, pp.21-31.
33. Jarrow, R. and S. Turnbull, 1996, Derivative Securities, South-Western College Publishing.
34. Kolb, R.W., 1998, Practical Readings in Financial Derivatives, Blackwell Publishers Inc.
35. Kemna, A.G.Z. and A.C.F. Vorst, 1990, “A Pricing Model for Options Based on Average Asset Values,” Journal of Banking and Finance, Vol.14, pp.113-129.
36. Kremer, J.W. and R.L. Roenfeldt, 1992, “Warrant Pricing: Jump-Diffusion vs. Black-Scholes,” Journal of Financial and Quantitative Analysis, June, pp.255-272.
37. Lauterbach, B. and P. Schultz, 1990, “Pricing Warrants: All Empirical Study of the Black-Scholes Model and Its Alternatives,” Journal of Finance, Sep., pp.1181-1192.
38. Leonard, D.C. and M.E. Solt, 1990, “On Using the Black-Scholes Model to Value Warrants,” Journal of Financial Research, Summer, pp.81-92.
39. Long, D.M. and D.T. Officer, 1997, “The Relationship between Option Mispricing and Volume in the Black-Scholes Option Model,” Journal of Financial Research, Vol.20, Spring, pp.1-12.
40. MacBeth, J.D. and L.J. Merville, 1979, “An Empirical Examination of the Black-Scholes Call Option Pricing Model,” Journal of Finance, Vol.34, May, pp.1173-1186.
41. MacBeth, J.D. and L.J. Merville, 1980, “Tests of the Black-Scholes and Cox Call Option Valuation Models,” Journal of Finance, Vol.35, May, pp.285-303.
42. Maddala, G.S., 1992, Introduction to Econometrics, Prentice-Hall, Inc.
43. Merton, R.C., 1973, “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, Vol.4, pp.141-183.
44. Merton, R.C., 1976, “Option Pricing When Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, Vol.3, pp.125-144.
45. Richken, P., 1995, “On Pricing Barrier Options,” Journal of Derivatives, Vol.3, pp.19-28.
46. Roll, R., 1977, “An Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends,” Journal of Financial Economics, Vol.5, pp.251-258.
47. Schulz, G.U. and S. Trautmann, 1994, “Robustness of Option-Like Warrant Valuation,” Journal of Banking and Finance, Vol.19, pp.841-859.
48. Smith, C. Jr., 1976, “Option Pricing: A Review,” Journal of Financial Economics, Jan-Mar, pp.3-51.
49. Stoll, H.R. and R.E. Whaley, 1993, Futures and Options: Theory and Application, Cincinnati: Southwestern Publishing Co.
50. Tilley, J.A., 1993, “Valuing American Options in a Path Simulation Model,” Trans. Society of Actuaries, pp.83-104.
51. Whaley, R.E., 1981, “On the Valuation of American Call Options on Stocks with Known Dividends,” Journal of Financial Economics, June, pp.207-211.
52. Whaley, R.E., 1982, “Valuation of American Call Options on Dividend-Paying Stocks: Empirical Tests,” Journal of Financial Economics, March, pp.29-58.
53. Zhang, P., 1998, Exotic Options, World Scientific Publishing Co.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top