跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子明
研究生(外文):YANG, ZI-MING
論文名稱:全濕式自組裝單層包覆無電鍍奈米銅導線製作與性質
論文名稱(外文):Properties of Self-Assembled-Monolayer Encapsulated Electroless Copper Nanowires Fabricated by Using an All-Wet Process
指導教授:陳錦山
口試委員:眭曉林方昭訓
口試日期:2017-07-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:117
中文關鍵詞:自組裝單層無電鍍銅導線填充銅金屬化導線
外文關鍵詞:self-assembled monolayerelectroless platingcopper wire fillingcopper metal wire
相關次數:
  • 被引用被引用:2
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當今的積體電路內連接導線之製作流程為離子化濺鍍TaN/Ta阻障層及銅晶種層、電鍍(或無電鍍)銅導線。但在面對未來技術節點持續精進,以及溝槽尺寸持續下降(僅約35~65 nm)的情況下,這種乾濕結合的銅鑲嵌流程已面臨諸多困境(如阻障層過厚及銅導線填充性不足);採用無電鍍(Electroless Plating)所生長的鈷合金阻障層因催化微粒的尺寸極限(3 nm),而使最小厚度止於5 nm,距離未來所需之‘近零厚度’門檻仍有一段距離,本論文提出以APTMS-SAM充當晶種吸附層及銅擴散阻障層,此種製程不但有積層結構較簡單的優點,且厚度僅1.6 nm。
本論文首先以平面試片進行SC-1化學溶液處理試片,使試片表充滿羥基,以利APTMS分子生長,後續對試片表面之APTMS-SAM進行SC-1溶液處理,對其表面進行改質,使其能順利固定Ni催化晶種,並催化生長無電鍍銅薄膜。後續將此「APTMS-SAM/Cu」試片進行不同溫度的退火處理,量測其整體片電阻變化,並以純銅試片為對照組,所得之結果證實,APTMS-SAM能有效阻擋銅的擴散行為,其臨界溫度由400℃提升至500℃。
後續將此製程導入溝槽導線製作,其尺寸為:深500 nm、線寬100 nm、線長25 m。將完成溝槽填充之試片進CMP處理,去除試片表面之銅膜,得到完整填充之銅導線,再以重量百分濃度為10 % 的雙氧水對銅膜進行表面處理,以及在銅膜表面生長APTMS-SAM,最終取得吾人所需之完整包覆APTMS-SAM的銅線試片。
最後將純銅導線、局部包覆APTMS-SAM及完整包覆APTMS-SAM的銅線試片分別進行CCS實驗,此三種試片的崩潰時間分別為580秒、1650秒及2850秒,此結果證實APTMS-SAM確實能增加銅導線的可靠度。

Currently, sputter deposited TaN/Ta and electrochemically plated Cu metallization layers are the key interconnection thin-film materials for integrated circuits. However, in the face of future technology nodes scaling continues to decline, this wet and dry combination of copper inlay process has faced many difficulties (such as the barrier layer is too thick). The electroless plating cobalt alloy barrier layer is limit by the catalytic particles (3 nm) size.
In this paper, SC-1 chemical solution was used to prepare the sample, and the sample was filled with hydroxyl group to facilitate the growth of APTMS. The APTMS solution on the surface of the sample was treated with SC-1 solution. Modified, so that it can be successfully to catch Ni catalytic seeds, and deposed electroless copper film.
This process was subsequently introduced into the trench wafer (500 nm deep, line width is 100 nm and a line length is 25 μm). After completed to fill the grooved sample we uesd CMP to remove the surface copper of the sample, get a complete filled copper wire, and then used the weight percentage of 10% hydrogen peroxide to treat the copper film surface, and growth of APTMS-SAM on the copper film surface, and ultimately to obtain the complete coating of APTMS-SAM copper wire sample.
Finally, CCS experiments were carried out on pure copper wire, APTMS-SAM partially-capping copper wire and APTMS-SAM all-capping copper wire, respectively. The collapse time of the three sample was 580 s, 1650 s and 2850 s. The results confirmed that APTMS -SAM does increase the reliability of copper wires.

誌謝 I
摘要 II
Abstract IV
第一章 緒論 2
第二章 文獻回顧 5
2.1 大馬士製程 5
2.2 奈米晶種技術 6
2.3 自組裝單層應用 8
2.3.1自組裝單層原理 8
2.3.2自組裝單層之阻障強化 9
2.3.3自組裝單層之晶種固定技術 12
2.4 銅導線填充 14
2.5 可靠度分析介紹 15
2.5.1可靠度簡介 15
2.5.2可靠度評估方法 16
第三章 實驗步驟與分析原理 26
3.1 試片整體製作流程 26
3.2個別步驟說明 26
3.2.1 p-SiOCH介電層基材準備 26
3.2.2 溝槽試片製作 27
3.2.3化學溶液表面改質 28
3.2.4 p-SiOCH之矽烷化 28
3.2.5自組裝單層表面羥基化 29
3.2.6催化晶種生長 29
3.2.7無電鍍銅填充 30
3.2.8化學機械研磨(CMP)處理 30
3.2.9銅導線全面APTMS-SAM披覆 31
3.3試片分析及儀器介紹 31
第四章 低k介電層平面試片分析 39
4.1 SC-1溶液羥基化處理對p-SiOCH之親水性與電性影響 39
4.1.1表面親水性變化分析—水接觸角量測 39
4.1.2絕緣性分析—J-E量測 40
4.1.3介電常數(k)變化分析 41
4.2 p-SiOCH之矽烷化(silylation)過程分析 43
4.2.1表面形貌與親水性變化分析 43
4.2.2 表面鍵結分析 45
4.3 自組裝單層之羥基化程度對晶種吸附之影響 53
4.3.1 SC-1處理時間對APTMS-SAM之鍵結改變效應 54
4.3.2 SC-1處理(羥基化)程度對晶種吸附能力之影響 56
4.4 晶種吸附機制及其相變化分析 57
4.5 無電鍍銅析鍍及其表面之APTMS-SAM生長行為 61
4.6 介電層溝槽填充 64
4.7 可靠度分析 66
4.7.1整體片電阻量測 66
4.7.2 定電流應力量測(CCS) 67
第五章 結論 108
參考文獻 110

1.D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevittt, W. Motsifft, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz , L. Su, S. Lucet, J. Slatteryt, Full copper wiring in a sub-0.25 μm CMOS ULSI technology, IEDM, 773-776 (1997).
2.S. Yokogawa, K. Kikuta, H. Tsuchiya, T.Takewaki, M. Suzuki, H. Toyoshima, Y. Kakuhara, N. Kawahara, T. Usami, K. Ohto, K. Fujii, Y. Tsuchiya, K. Arita, K. Motoyama, M. Tohara, T. Taiji, T. Kurokawa, and M. Sekine, Tradeoff Characteristics Between Resistivity and Reliability for Scaled-Down Cu-Based Interconnects, IEEE Trans. on Electron Devices, 55, 350-356 (2008).
3.V.M. Dubin Y.Shacham-Diaman, B. Zhao, P. K. Vasudev, C. H. Ting, Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, J.Electrochem. Soc., 144, 898-908 (1997).
4.K Weiss , S Riedel, S.E Schulz, M Schwerd, H Helneder, H Wendt, T Gessner, Development of different copper seed layers with respect to the copper electroplating process, Microelectron. Eng., 50, 433-440 (2000).
5.C. H. Lai, Y. C. Sung, S. J. Lin, S. Y. Chang, And J. W. Yeh, Atomic-Scale Observation On The Nucleation And Growth Of Displacement-Activated Palladium Catalysts And Electroless Copper Plating, Electrochem. Solid State Lett., 8, C114-C116 (2005).
6.V. M. Dubin, Electroless Ni-P Deposition On Silicon With Pd Activation, J. Electrochem. Soc., 139, 1289 (1992).
7.Y. H. Zhang, T. T. Tan, S. Q. Yu And S. Y. Zhuang, Electroless Copper Deposition In The Photographic Gelatin Layer, J. Electrochem. Soc., 146, 1270-1272 (1999).
8.T. Osaka, N. Takano, T. Kurokawa, K. Ueno, Fabrication Of Electroless Nirep Barrier Layer On SiO2 Without Sputtered Seed Layer, Electrochem. Solid-State Lett., 5, 7-10 (2002).
9.http://www.mtl.kyoto-u.ac.jp/english/laboratory/nanoscopic/nanoscopic.htm
10.http://ch-www.st-andrews.ac.uk/allhighlights.html
11.Sellers et al., J. Am. Chem. Soc., 1993
12.Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, 633-636.
13.Fang, X., Li, B., Petersen, E., Seo, Y. S., Samuilov, V. A., Chen, Y., Sokolov,J. C., Shew, C. Y., and Rafailovich, M. H., 2006, “Drying of DNA Droplets,”Langmuir, 22, 6308-6312 (2006).
14.H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38, 777-782 (2007).
15.吳文發、黃麒峰,銅製程之擴散阻障層,奈米通訊,第六捲,第四期 (1999)。
16.M. Paunovic, P. J. Bailey, R. G. Schad and D. A. Smith, Electrochemically deposited diffusion barriers, J. Electrochem. Soc., 141, 1843-1850 (1994).
17.Y. Shacham-Diamand, A. Zylberman, N. Petrov and Y. Sverdlov, Electroless Co(Mo,P) Films for Cu Interconnect Application, Microelectron. Eng., 64, 315-320 (2002).
18.H. Nakano, T. Itabashi and H. Akahoshi, Electroless deposited cobalt-tungsten-boron capping barrier metal on damascene copper interconnection, J. Electrochem. Soc., 152, C163-C166 (2005).
19.Constitution of Binary Alloy, M. Hansen and K. Anderko editor, McGraw-Hill Book Company (1985).
20.J.P. Wightman, T.D. Lin, H.F. Webster, Surface chemical aspects of polymer/metal adhesion, Int. J. Adhes. Adhes., 133-137 (1992).
21.Abraham Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96, 1533-1554 (1996).
22.A. E. Kaloyeros, E. Eisenbraun, Ultrathin Diffusion Barriers/liners for Giga Scale Copper Metallization, annurev.matsci., 30, 363-385 (2000).
23.A. V. Krasnoslobodtsev, S. N. Smirnov, Effect of Water on Silanization of Silica by Trimethoxysilanes, Langmuir. 18, 3181-3184 (2002).
24.Xin Liu, Qi Wang, Song Wu, Zengzeng Liu, Enhanced CVD of Copper Films on Self-Assembled Monolayers as Ultrathin Diffusion Barriers, J. Electrochem. Soc., 153(3), C142-C45 (2006).
25.P. G. Ganesan, A. P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular, Appl. Phys. Lett., 85(4), 579 (2004).
26.D. Prashar, Self Assembled Monolayers -A Review, Int.J. ChemTech Res., 4, 258-265 (2012).
27.T. Osaka, N.Takano, T. Kurokawa, T. Kaneko, K. Uenoc, Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology, J. Electrochem. Soc., 149, 573-578 (2002).
28.T. Osaka, N. Takano, T. Kurokawa, K. Ueno, Fabrication of Electroless NiReP Barrier Layer on SiO2 Without Sputtered Seed Layer, Electrochem. Solid-State Lett., 5, 7-10 (2002).
29.T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta, 54, 6053 (2009).
30.S. T. Chen, G. S. Chen, C. H. Huang, A vacuum plasma surface pretreatment for refining seeding of Co in electroless copper plating, Thin Solid Films., 518, 4261-4265 (2010).
31.C.S. Hsu, S.T. Chen, Y.S. Tang, G.S. Chen, Strengthening electroless Co-based barrier layers by minor refractory-metal doping, Thin Solid Films, 517, 1274-1278 (2008).
32.G. S. Chen, Y. S. Tang, S. T. Chen, T. J. Yang, Electroless deposition of ultrathin Co-B based barriers for Cu metallization using an innovative seeding technique, Electrochem. Solid-State Lett., 9, 141 (2006).
33.G.S. Chen, S.T. Chen, Characterization of Ultrathin Electroless Barriers Grown by Self-Aligned Deposition on Silicon-Based Dielectric Films, J. Electrochem. Soc., 151, 99-105 (2004).
34.S. T. Chen, G. S. Chen, T. J. Yang, T. C. Chang, W. H. Yang, The Synergistic Effect of N2/H2 Gases in the Plasma Passivation of Siloxane-Based Low-k Polymer Films, Electrochem. Solid-State Lett., 6, 4-7 (2003).
35.S. T. Chen, G. S. Chen, Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization, Langmuir, 27, 12143 (2011).
36.T. Komeda, K. Namba, and Y. Nishioka, Self-assembled-monolayer film islands as a self-patterned-mask for SiO2 thickness measurement with atomic force microscopy, Appl. Phys. 70, 3398 (1997).
37.G.S. Chen, D.Y. Wu, S.T. Chen, Y.L. Cheng, J.S. Fang, T.M. Yang, Enhancement of Seeding and Electroless Cu Plating on TaN Barrier Layers: The Role of Plasma Functionalized Self-Assembled Monolayers, Journal of The Electrochemical Society,163(9) D463-D468 (2016).
38.F. J. Himpsel, F. R. Mcfeely, A. Taleb-Ibrahimi, J. A. Yarmoff, The Physics And Chemistry Of Sio2 And The Si-Sio2 Interface, C. R. Helms And B. E. Deal, Editors, 219, Plenum Press, New York (1988).
39.T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation and characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta., 54, 6053–6057 (2009).
40.鄭郁勳,碩士論文,逢甲大學材料科學與工程學系,民國104。
41.Pascal Doppelt and Thomas H. Baum, The chemical vapor deposition of copper and copper alloys, Thin Solid Film, 270, 480 (1995).
42.E. Harari, Dielectric breakdown in electrically stressed thin films of thermal SiO2, J. Appl. Phys. 49, 2478 (1978).
43.K. F. Schuegraf and C. Hu, Reliability of thin SiO2, Semicond. Sci. Tech. 9, 989 (1994).
44.B. Kaczer and R. Degraeve, The influence of elevated temperature on degradation and lifetime prediction of thin silicon dioxide films, IEEE Trans. Electron Dev. 47, 1514 (2000).
45.R. Rodriguez, E. Miranda, R. Pau, J. Sune, M. Nafria and X. Aymerich, Monitoring the Degradation That Causes the Breakdown od Ultrathin(<5 nm) SiO2 Gate Oxides, IEEE Electron Dev. Lett. 21, 251 (2000).
46.P. Cappelletti, P. Ghezzi, F. Pio, and C. Riva, Accelerated current test for fast tunnel oxide evaluation, Proc. ICMTS 4, 81 (1991).
47.Joong Ho Moon , Jin Ho Kim , Ki Jeong Kim, Tai Hee Kang, Bongsoo Kim, Chan Ho Kim, Jong Hoon Hahn, Joon Won Park, Absolute Surface Density of the Amine Group of the Aminosilylated Thin Layers:  Ultraviolet−Visible Spectroscopy, Second Harmonic Generation, and Synchrotron-Radiation Photoelectron Spectroscopy Study ., Langmuir, 13(16), 4305–4310 (1997).
48.C. Önneby, C. G. Pantano, Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2SiO2 interface JVSTA 15, 1597-1602 (1997).
49.Licheng M. Hana, Ji-Sheng Panb, Shou Mian Chena, N. Balasubramaniana, Jianou Shic, Ling Soon Wongc, P. D. Fooa, Characterization of Carbon-Doped SiO2 Low k Thin Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane, Journal of The Electrochemical Society, 148(7), F148-F153 (2001).
50.G. Jakša, B. Štefane, J. Kovač, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer., Surf. Interface Anal., 45, 1709-1713 (2013).
51.JaeyeongHeo, Hyeong JoonKim, JeongHoon Han, Jong-Won Shon, The structures of low dielectric constant SiOC thin films prepared by direct and remote plasma enhanced chemical vapor deposition TSF, 515(07), 5035-5039 (2007).
52.An Soo Jung, R. Navamathavan, Kwang Man Lee, Chi Kyu Choi, Plasma characteristics of low-k SiOC(–H) films prepared by using plasma enhanced chemical vapor deposition from DMDMS/O2 precursors, Surface and Coatings Technology, 202(22-23), 5693-5696 (2008).
53.A. U. Alam, M. M. R. Howlader, M. J. Deen, Oxygen Plasma and Humidity Dependent Surface Analysis of Silicon, Silicon Dioxide and Glass for Direct Wafer Bonding, Journal of Solid State Science and Technology, 2(12), 515-523 (2013).
54.Fengxiang Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities. Langmuir, 20, 2309-2314 (2004).
55.Xiaoyan Song, Jin Zhai, Yilin Wang, Lei Jiang, Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening, JCIS 298, 267-273 (2006).
56.Cai Chu-jiang, Shen Zhi-gang, Xing Yu-shan, Ma Shu-lin, Surface topography and character of γ-aminopropyltriethoxysilane and dodecyltrimethoxysilane films adsorbed on the silicon dioxide substrate via vapour phase deposition, J. Phys. D, 39, 4829-4837 (2006).
57.K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100) .Langmuir, 11(2), 512-518 (1995).
58.Janildo L. Magalhaes, Leonardo M. Moreira, Ubirajara P. Rodrigues-Filho, Martha J. Giz, Surface chemistry of the iron tetraazamacrocycle on theaminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS. Surf. Interface Anal., 33, 293-298 (2002).
59.E. Metwalli, D. Haines, O. Becker, S. Conzone, C.G. Pantano el., surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates, Journal of Colloid and Interface Science, 298, 825-831 (2006).
60.S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi el., Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates, JCIS, 321, 235-241 (2008).
61.Lo¨ıc Marchetti, Fr´ed´eric Miserque, St´ephane Perrin, Mich`ele Pijolat, XPS study of Ni-base alloys oxide films formed in primary conditions of pressurized water reactor: XPS study of Ni-base alloys oxide films formed PWR primary media, 47(5), 632-642 (2015).
62.Jeong Woo Lee, Taebin Ahn, Devaraj Soundararajan el., Non-aqueous approach to the preparation of reduced graphene oxide/α- Ni(OH)2 hybrid composites and their high capacitance behavior, 47, 6305-6307 (2011).

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊