跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/07 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹叡耆
研究生(外文):Jui-Chi Chan
論文名稱:探討人類間葉幹細胞之 Sirtuin 3 減少對抗氧化防禦機制之損傷及其分化成脂肪細胞能力之影響
論文名稱(外文):Role of Defective Antioxidant Defense System in the Impairment of Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cell with Sirt3 Knockdown
指導教授:魏耀揮魏耀揮引用關係
指導教授(外文):Yau-Huei Wei
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:78
中文關鍵詞:Sirtuin 3間葉幹細胞脂肪細胞
外文關鍵詞:Sirtuin 3Mesenchymal stem cellAdipocytes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
過去已有許多的研究指出,粒線體在幹細胞分化及成熟細胞中扮演了重要的角色。另外,粒線體及脂肪細胞功能的異常也被證實與第二型糖尿病有著密切的關係,然而目前對於粒線體功能異常導致第二型糖尿病的機制仍不清楚。在本研究中,我主要探討粒線體中之 Sirtuin 3 蛋白在衍生自人類脂肪組織之間葉幹細胞進行脂肪細胞分化及抗氧化防禦調控機制所扮演的角色。我發現在脂肪細胞分化的過程中,粒線體生合成相關之基因與呼吸酵素次單位蛋白之表現量皆有顯著上升,而粒線體中的活性氧分子與粒線體之膜電位也在分化刺激後短時間內有顯著的增加,抗氧化酵素之mRNA與蛋白表現量也在細胞分化過程中有顯著的上升。此外,我發現粒線體中之 Sirtuin 3 蛋白表現量在脂肪細胞分化的過程中有顯著的增加。為了進一步探討 Sirtuin 3 在脂肪細胞分化過程中所扮演的角色,我先利用病毒感染人類間葉幹細胞來降低其蛋白表現量,再使其進行脂肪細胞分化。我首先分析在 Sirtuin 3 knockdown 的脂肪細胞中,其脂肪分化及與脂肪細胞功能相關基因的表現量,結果顯示 Sirtuin 3 knockdown 會造成這些基因的表現下降。進一步分析粒線體生合成之相關基因的表現,我發現 Sirtuin 3 knockdown 的脂肪細胞有顯著受到抑制的現象。此外,我觀察到 Sirtuin 3 knockdown 的人類間葉幹細胞分化而成之脂肪細胞的粒線體膜電位有顯著的下降,而粒線體中活性氧分子則呈顯著的上升。另一方面,我探討細胞中抗氧化酵素基因之表現,發現 Sirtuin 3 knockdown 會導致這些基因的表現受到抑制。綜合以上的實驗結果,我證明在衍生自脂肪組織之人類間葉幹細胞分化為成熟脂肪細胞的過程中,Sirtuin 3 的蛋白表現與粒線體生合成及呼吸作用有著密切的關係。我也進一步闡明 Sirtuin 3 的表現量下降會造成脂肪細胞之粒線體功能異常,以及抗氧化防禦機制受損,並增加細胞中之氧化壓力,這些損傷可能是 Sirtuin 3 缺少導致脂肪細胞分化受到抑制的原因。
Mitochondria play important roles in the differentiation and functioning of stem cells. Abundant evidence has shown that mitochondrial dysfunction in adipocytes is associated with type 2 diabetes. However, the mechanism by which mitochondrial dysfunction causes type 2 diabetes remains to be elucidated. In this study, the roles that sirtuin 3 (SIRT3), a mitochondrial protein, plays in adipogenic differentiation, mitochondrial biogenesis and antioxidant defense system of adipocytes differentiated from human adipose tissue-derived mesenchymal stem cells (ad-hMSCs) were investigated. The results showed that the mRNA levels of mitochondrial biogenesis-related genes, peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1), and the protein levels of respiratory enzyme complex subunits were up-regulated during adipogenic differentiation of ad-hMSCs. The levels of mitochondrial membrane potential and reactive oxygen species (ROS) in mitochondria were increased, and the mRNA and protein levels of the antioxidant enzymes Mn-SOD and catalase were up-regulated during adipogenic differentiation of ad-hMSCs. In addition, the protein level of SIRT3 was dramatically increased during adipogenic differentiation of ad-hMSCs. To further investigate the role of SIRT3 in adipogenic differentiation, I infected ad-hMSCs with lentivirus to suppress the protein expression of SIRT3 and examined its impact on adipogenic differentiation. The protein levels of adipogenic markers, including CCAAT enhancer binding protein  (C/EBP), peroxisome proliferator-activated receptor  (PPAR), fatty acid binding protein 4 (FABP4) and adiponectin were decreased during adipogenic differentiation of ad-hMSCs with SIRT3-knockdown. In addition, the mRNA and protein levels of PGC-1and mitochondrial membrane potential were decreased by SIRT3 knockdown during adipogenic differentiation of ad-hMSCs. The mitochondrial ROS levels were increased and the protein levels of antioxidant enzymes were decreased by SIRT3 knockdown during adipogenic differentiation of ad-hMSCs. These findings together suggest that SIRT3 plays important roles in mitochondrial biogenesis, adipogenic differentiation and the antioxidant defense of adipocytes. Moreover, I demonstrated that SIRT3 deficiency caused an increase of the oxidative stress level in mitochondria and resulted in mitochondrial dysfunction, which in turn impaired the adipogenic differentiation of ad-hMSCs.
中文摘要 .................................. 3
Abstract ................................. 4
Abbreviations ............................ 6
Introduction
I. Stem Cells ......................... 8
II. Mitochondria ....................... 11
III. Sirtuins .......................... 15
IV. Diabetes Mellitus .................. 18
Rationale and Significance ............... 20
Materials and Methods .................... 21
Results .................................. 31
Discussion ............................... 39
References ............................... 46
Figures .................................. 58
Figure 1. Morphological changes during adipogenic differentiation of ad-hMSCs .............. 58
Figure 2. Increase of the expression of adipogenic
markers during adipogenic differentiation of ad-hMSCs
.......................................... 59
Figure 3. Increase in the expression of the subunits of respiratory enzyme complexes during adipogenic differentiation of ad-hMSCs .............. 60
Figure 4. Increase of mitochondrial membrane potential (m) at the early stage of adipogenic differentiation of ad-hMSCs .......................................... 61
Figure 5. Dramatic increase of the mRNA levels of genes related to mitochondrial biogenesis during adipogenic differentiation of ad-hMSCs .............. 62
Figure 6. Increase of mitochondrial reactive oxygen species during adipogenic Differentiation of ad-hMSCs
.......................................... 63
Figure 7. Increase in the expression of antioxidant enzymes during adipogenic differentiation of ad-hMSCs .......................................... 64
Figure 8. Increase in the protein expression of SIRT3 during adipogenic differentiation of ad-hMSCs ... 66
Figure 9. Decrease of the induction fold of SIRT3 after lentiviral infection ..................... 67
Figure 10. Inhibition of lipid droplets formation in adipocytes differentiated from SIRT3-knockdown ad-hMSCs .......................................... 68
Figure 11. Decrease in the mRNA expression of adipogenic marker genes in adipocytes differentiated from SIRT3-knockdown ad-hMSCs ....................... 69
Figure 12. Decrease in the expression of PGC-1 in adipocytes differentiated from SIRT3-knockdown ad-hMSCs .......................................... 71
Figure 13. Decrease of the mitochondrial membrane potential in ad-hMSCs with SIRT3-knockdown at the early stage of adipogenic differentiation ............... 72
Figure 14. Increase of mitochondrial ROS in SIRT3-knockdown ad-hMSCs at different time points after adipogenic differentiation .......................... 73
Figure 15. Decrease of the mRNA expression levels of antioxidant enzymes during adipogenic differentiation of ad-hMSCs with SIRT3-knockdown ............... 74
Figure 16. A schematic summary of the results obtained in this study ............................... 75

Tables ................................... 76
Table 1. Oligonucleotide sequences of primers and Taqman probes used in this study ................ 76
Table 2. Antibodies used in this study ... 77
1. Orford, K.W. & Scadden, D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9, 115-28 (2008).
2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-67 (2006).
3. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-72 (2007).
4. Inoue, H., Nagata, N., Kurokawa, H. & Yamanaka, S. iPS cells: a game changer for future medicine. EMBO J 33, 409-17 (2014).
5. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. & Hedrick, M. H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-95 (2002).
6. Xu, Y., Malladi, P., Wagner, D. R. & Longaker, M. T. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7, 300-5 (2005).
7. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. & Lee, O. K. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275-84 (2004).
8. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L. & Chen, T. H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, 1669-75 (2004).
9. Bieback, K., Kern, S., Kluter, H. & Eichler, H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22, 625-34 (2004).
10. Tsai, M. S., Lee, J. L., Chang, Y. J. & Hwang, S. M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19, 1450-6 (2004).
11. Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L. & Chang, Y, J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74, 545-51 (2006).
12. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97, 13625-30 (2000).
13. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-7 (1999).
14. Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., Ishikawa, H., Mimura, T., Kitada, M., Suzuki, Y. & Ide, C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113, 1701-10 (2004).
15. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G. & Shi, S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100, 5807-12 (2003).
16. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenback, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. & Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-7 (2006).
17. Chang, Y. J., Shih, D. T., Tseng, C. P., Hsieh, T. B., Lee, D. C. & Hwang, S. M. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24, 679-85 (2006).
18. Kassem, M. & Abdallah, B. M. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 331, 157-63 (2008).
19. Bauer, G., Dao, M. A., Case, S. S., Meyerrose, T., Wirthlin, L., Zhou, P., Wang, X., Herrbrich, P., Aervalo, J., Csik, S., Skelton, D. C., Walker, J., Pepper, K., Kohn, D. B. & Nolta, J. A. In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16, 1308-15 (2008).
20. Quarto, R., Mastrogiacome, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukow, A., Kon, E. & Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells . N Engl J Med 344, 385-6 (2001).
21. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D., Arseniev, L., Hertenstein, B., Ganser, A. & Drexler, H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 364, 141-8 (2004).
22. Jiang, P. C., Xiong, W. P., Wang, G., Ma, C., Yao, W. Q., Kendell, S. F., Mehling, B. M., Yuan, X. H. & Wu, D. C. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med 6, 140-6 (2013).
23. Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. & Ringden, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-41 (2004).
24. Bang, O. Y., Lee, J. S., Lee, P. H. & Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57, 874-82 (2005).
25. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-53 (2006).
26. Mohamed-Ali, V., Pinkney, J. H. & Coppack, S. W. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 22, 1145-58 (1998).
27. Cristancho, A. G. & Lazer, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12, 722-34 (2011).
28. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M. & Mortensen, R. M. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-7 (1999).
29. Berger, J. P., Akiyama, T. E. & Meinke, P. T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26, 244-251 (2005).
30. Schupp, M., Cristancho, A. G., Lefterova, M. I., Hanniman, E. A., Briggs, E. R., Steger, D. J., Qatanani, M., Curtin, J. C., Schug, J., Ochsner, S. A., Ochsner, S. A., McKenna, N. J. & Lazar, M. A. Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype. J Biol Chem 284, 9458-64 (2009).
31. Jones, J. R., Barrich, C., Kim, K. A., Lindner, J., Blondeau, B., Fujimoto, Y., Shiota, M., Kesterson, R. A., Kahn, B. B. & Magnuson, M. A. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA 102, 6207-12 (2005).
32. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77, 6715-9 (1980).
33. Anderson, S., Bankier, A. T., Barrel, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. & Young, I. G. Sequence and organization of the human mitochondrial genonme. Nature 290, 457-65 (1981).
34. Stojanovski, D., Rissler, M., Pfanner, N. & Meisinger, C. Mitochondrial morphology and protein import – a tight connection? Biochim Biophys Acta 1763, 414-21 (2006).
35. Herrmann, J. M. & Hell, K. Chopped, trapped or tacked – protein translocation into the IMS of mitochondria. Trends Biochem Sci 30, 205-11 (2005).
36. Senior, A. E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1FO-ATP synthase. Biochim Biophys Acta 1553, 188-211 (2002).
37. Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79, 208-17 (2008).
38. Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M. & Larsson, N. G. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13, 935-44 (2004).
39. Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88, 993-1001 (2010).
40. Michael, M. P. How mitochondria produce reactive oxygen species. Biochem J 417, 1-13 (2008).
41. Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11, 173-86 (2001).
42. Lee, H. C. & Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-34 (2005).
43. Tormos, K. V., Anso, E., Hamanaka, R. B. Eisenbart, J., Kalyanaraman, B. & Chandel, N. S. Mitochondrial Complex III ROS regulate adipocyte differentiation. Cell Metab 14, 537-44 (2011).
44. Adam-Vizi, V. & Chinopoulos, C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27, 639-45 (2006).
45. Turrent, J. F. Mitochondrial formation of reactive oxygen species. J Physiol 552, 355-44 (2003).
46. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84 (2007).
47. Meister, A. New aspects of glutathione biochemistry and transport: selective alteration of glutathione metabolism. Fed Proc 43, 3031-42 (1984).
48. Sies, H. Strategies of antioxidant defense. Eur J Biochem 215, 213-9 (1993).
49. Beyer, R. E. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 70, 390-403 (1992).
50. Bhabak, K. P. & Mugesh, G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43, 1408-19 (2010).
51. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-80 (1999).
52. Imai, S. & Guarente, L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31, 212-20 (2010).
53. Nakamura, Y., Ogura, M., Tanaka, D. & Inagaki, N. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun 366, 174-9 (2008).
54. Gurd, B. J., Holloway, G. P., Yoshida, Y. & Bonen, A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 61, 733-41 (2012).
55. North, B. J. & Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5, 224 (2004).
56. Yamamoto, H., Schoonjans, K. & Auwerx, J. Sirtuin functions in health and disease. Mol Endocrinol 21, 1745-55 (2007).
57. Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q. & Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-9 (2011).
58. Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R. & Ge, E. SIRT6 regulates TNF-a secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-13 (2013).
59. Efroni, S., Duttaqupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., Bazett-Jones, D. P., Le Grice, S., McKay, R. D., Buetow, K. H., Gingeras, T. R., Misteli, T., Meshorer, E. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437-47 (2008).
60. Calvanese, V., Lare, E., Suarez-Alvarez, B., Abu, Dawud, R., Vazquez-Chantada, M., Martinez-Chantar, M. L., Embade, N., Lopez-Nieva, P., Horrilo, A., Hmadcha, A., Soria, B., Piazzolla, D., Herranz, D., Serrano, M., Mato, J. M., Andrews, P. W., Lopez-Larrea, C., Esteller, M. & Fraga, M. F. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA 107, 13736-41 (2010).
61. Wang, F. & Tong, Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 20, 801-8 (2009).
62. Giralt, A., Hondares, E., Villena, J. A., Ribas, F., Diaz-Delfin, J., Giralt, M., Iqlesias, R. & Villarroya, F. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, and essential component of the thermogenic brown adipocyte phenotype. J Biol Chem 286, 16958-66 (2011).
63. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong,Y. & Guan, K. L. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-4 (2010).
64. Bell, E. L. & Guarente, L. The SirT3 divining rod points to oxidative stress. Mol Cell 42, 561-8 (2011).
65. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103, 10224-9 (2006).
66. Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., Grueter, C. A., Harris, C., Biddinger, S., Ilkayeva, O. R., Stevens, R. D., Li, Y., Saha, A. K., Ruderman, N. B., Bain, J. R., Newgard, C. B., Farese, R. V. Jr., Alt, F. W., Kahn, C. R. & Verdin, E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-5 (2010).
67. Shimazu, T., Hirshchey, M. D., Hua, L., Dittenhafer-Reed., K. E., Schwer, B., Lombard, D. B., Li, Y., Bunkenborg, j., Alt, F. W., Denu, J. M., Jacobson, M. P. & Verdin, E. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12, 654-61 (2010).
68. Ahn, B. H., Kim, H. S., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., Deng, C. X. & Finkel, T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105, 14447-52 (2008).
69. Cimen, H., Han, M. J., Yang, Y., Tong, Q., Koc, H. & Koc, E. C. Regulation of succinate degydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-11 (2010).
70. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A. & Gupta, M. P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119, 2758-71 (2009).
71. Jing, E., Emanuelli, B., Hirschey, M. D., Boucher, J., Lee, K. Y., Lombard, D., Verdin, E. M. & Kahn, C. R. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 108, 14608-13 (2011).
72. Hirschey, M. D., Shimazu, T., Jing, E., Grueter, C. A., Collins, A. M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M. M., Schwer, B., Stevens, R. D., Muehlbauer, M. J., Kakar, S., Bass, N. M., Kuusisto, J., Laakso, M., Alt, F. W., Newgard, C. B., Farese, R. V. Jr., Kahn, C. R. & Verdin, E. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44, 177-90 (2011)
73. Ripsin, C. M., Kang, H. & Urban, R. J. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician 79, 29-36 (2009).
74. Pasquier, F. Diabetes and cognitive impairment: how to evaluate the cognitive status? Diabetes Metab 36 Suppl 3, S100-5 (2010).
75. Liang, P., Hughes, V. & Fukagawa, N. K. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemic stress. Diabetes 46, 920-3 (1997).
76. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350, 664-71 (2004).
77. Mogensen, M., Sahlin, K., Fernstrom, M., Glintborg, D., Vind, B. F., Beck-Nielsen, H. & Hojlund, K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56, 1592-9 (2007).
78. Choo, H.J., Kim, J.H., Kwon, O.B., Lee, C.S., Mun, J.Y., Han, S.S., Yoon, Y.S., Yoon, G., Choi, K.M. and Ko, Y.G. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49, 784-91 (2006).
79. Lim, J. H., Lee, J. I., Suh, Y. H., Kim, W., Song, J. H. & Jung, M. H. Mitochondrial dysfunction induces aberrant insulin signaling and glucose utilization in murine C2C12 myotube cells. Diabetologia 49, 1924-36 (2006).
80. Zhang, D., Liu, Z. X., Choi, C. S., Tian, L., Kibbey, R., Dong, J., Cline, G. W., Wood, P. A. & Shulman, G. I. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104, 17075-80 (2007).
81. Liang, H. & Ward, W. F. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30, 145-51 (2006).
82. Raju, I., Kannan, K. & Abraham, E. C. FoxO3a serves as a biomarker of oxidative stress in human lens epithelial cells under conditions of hyperglycemia. PLoS One 8, e67126 (2013).
83. Yechoor, V. K., Patti, M. E., Ueki, K., Laustsen, P. G., Saccone, R., Rauniyar, R. & Kahn, C. R. Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci USA 101, 16525-60 (2004).
84. Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 23, 435-43 (2012).
85. Wang, C. H., Wang, C. C., Huang, H. C. & Wei, Y. H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J 280, 1039-50 (2013).
86. Ge, X., Yu, Q., Qi, W., Shi, X. & Zhai, Q. Chronic insulin treatment causes insulin resistance in 3T3-L1 adipocytes through oxidative stress. Free Rad Res 42, 582-91 (2008).
87. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd Aredn, K. C. & Accili, D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 4, 119-29 (2003).
88. Munekata, K., Sakamoto, K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 45, 642-51 (2009).
89. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. & Croop, L. C. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267-73 (2003).
90. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944-50 (2002).
91. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., Landaker, E. J., Goldfine, A. B., Mun, E., DeFronzo, R., Finlayson, J., Kahn, C. R. & Mandarino, L. J. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100, 8466-71 (2003).
92. Sheuermann-Freestone, M., Madsen, P. L., Manners, D., Blamire, A. M., Buckingham, R. E., Styles, P., Radda, G. K., Neubauer, S. & Clarke, K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107, 3040-6 (2003).
93. Giralt, A. & Villarroya, F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444, 1-10 (2012).
94. Zhang, Y., Marsboom, G., Toth, P. T. & Rehman, J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One 8, e77077 (2013).
95. Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66, 562-73 (2005).
96. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A. & Gupta, M. P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119, 2758-71 (2009).
97. Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., Hayes, McDonald. W., Olivier, A. K., Spitz, D. R. & Gius, D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40, 893-904 (2010).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top