|
1. Orford, K.W. & Scadden, D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9, 115-28 (2008). 2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-67 (2006). 3. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-72 (2007). 4. Inoue, H., Nagata, N., Kurokawa, H. & Yamanaka, S. iPS cells: a game changer for future medicine. EMBO J 33, 409-17 (2014). 5. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. & Hedrick, M. H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-95 (2002). 6. Xu, Y., Malladi, P., Wagner, D. R. & Longaker, M. T. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7, 300-5 (2005). 7. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. & Lee, O. K. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275-84 (2004). 8. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L. & Chen, T. H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, 1669-75 (2004). 9. Bieback, K., Kern, S., Kluter, H. & Eichler, H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22, 625-34 (2004). 10. Tsai, M. S., Lee, J. L., Chang, Y. J. & Hwang, S. M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19, 1450-6 (2004). 11. Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L. & Chang, Y, J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74, 545-51 (2006). 12. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97, 13625-30 (2000). 13. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-7 (1999). 14. Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., Ishikawa, H., Mimura, T., Kitada, M., Suzuki, Y. & Ide, C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113, 1701-10 (2004). 15. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G. & Shi, S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100, 5807-12 (2003). 16. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenback, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. & Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-7 (2006). 17. Chang, Y. J., Shih, D. T., Tseng, C. P., Hsieh, T. B., Lee, D. C. & Hwang, S. M. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24, 679-85 (2006). 18. Kassem, M. & Abdallah, B. M. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 331, 157-63 (2008). 19. Bauer, G., Dao, M. A., Case, S. S., Meyerrose, T., Wirthlin, L., Zhou, P., Wang, X., Herrbrich, P., Aervalo, J., Csik, S., Skelton, D. C., Walker, J., Pepper, K., Kohn, D. B. & Nolta, J. A. In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16, 1308-15 (2008). 20. Quarto, R., Mastrogiacome, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukow, A., Kon, E. & Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells . N Engl J Med 344, 385-6 (2001). 21. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D., Arseniev, L., Hertenstein, B., Ganser, A. & Drexler, H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 364, 141-8 (2004). 22. Jiang, P. C., Xiong, W. P., Wang, G., Ma, C., Yao, W. Q., Kendell, S. F., Mehling, B. M., Yuan, X. H. & Wu, D. C. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med 6, 140-6 (2013). 23. Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. & Ringden, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-41 (2004). 24. Bang, O. Y., Lee, J. S., Lee, P. H. & Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57, 874-82 (2005). 25. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-53 (2006). 26. Mohamed-Ali, V., Pinkney, J. H. & Coppack, S. W. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 22, 1145-58 (1998). 27. Cristancho, A. G. & Lazer, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12, 722-34 (2011). 28. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M. & Mortensen, R. M. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-7 (1999). 29. Berger, J. P., Akiyama, T. E. & Meinke, P. T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26, 244-251 (2005). 30. Schupp, M., Cristancho, A. G., Lefterova, M. I., Hanniman, E. A., Briggs, E. R., Steger, D. J., Qatanani, M., Curtin, J. C., Schug, J., Ochsner, S. A., Ochsner, S. A., McKenna, N. J. & Lazar, M. A. Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype. J Biol Chem 284, 9458-64 (2009). 31. Jones, J. R., Barrich, C., Kim, K. A., Lindner, J., Blondeau, B., Fujimoto, Y., Shiota, M., Kesterson, R. A., Kahn, B. B. & Magnuson, M. A. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA 102, 6207-12 (2005). 32. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77, 6715-9 (1980). 33. Anderson, S., Bankier, A. T., Barrel, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. & Young, I. G. Sequence and organization of the human mitochondrial genonme. Nature 290, 457-65 (1981). 34. Stojanovski, D., Rissler, M., Pfanner, N. & Meisinger, C. Mitochondrial morphology and protein import – a tight connection? Biochim Biophys Acta 1763, 414-21 (2006). 35. Herrmann, J. M. & Hell, K. Chopped, trapped or tacked – protein translocation into the IMS of mitochondria. Trends Biochem Sci 30, 205-11 (2005). 36. Senior, A. E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1FO-ATP synthase. Biochim Biophys Acta 1553, 188-211 (2002). 37. Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79, 208-17 (2008). 38. Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M. & Larsson, N. G. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13, 935-44 (2004). 39. Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88, 993-1001 (2010). 40. Michael, M. P. How mitochondria produce reactive oxygen species. Biochem J 417, 1-13 (2008). 41. Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11, 173-86 (2001). 42. Lee, H. C. & Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-34 (2005). 43. Tormos, K. V., Anso, E., Hamanaka, R. B. Eisenbart, J., Kalyanaraman, B. & Chandel, N. S. Mitochondrial Complex III ROS regulate adipocyte differentiation. Cell Metab 14, 537-44 (2011). 44. Adam-Vizi, V. & Chinopoulos, C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27, 639-45 (2006). 45. Turrent, J. F. Mitochondrial formation of reactive oxygen species. J Physiol 552, 355-44 (2003). 46. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84 (2007). 47. Meister, A. New aspects of glutathione biochemistry and transport: selective alteration of glutathione metabolism. Fed Proc 43, 3031-42 (1984). 48. Sies, H. Strategies of antioxidant defense. Eur J Biochem 215, 213-9 (1993). 49. Beyer, R. E. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 70, 390-403 (1992). 50. Bhabak, K. P. & Mugesh, G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43, 1408-19 (2010). 51. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-80 (1999). 52. Imai, S. & Guarente, L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31, 212-20 (2010). 53. Nakamura, Y., Ogura, M., Tanaka, D. & Inagaki, N. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun 366, 174-9 (2008). 54. Gurd, B. J., Holloway, G. P., Yoshida, Y. & Bonen, A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 61, 733-41 (2012). 55. North, B. J. & Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5, 224 (2004). 56. Yamamoto, H., Schoonjans, K. & Auwerx, J. Sirtuin functions in health and disease. Mol Endocrinol 21, 1745-55 (2007). 57. Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q. & Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-9 (2011). 58. Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R. & Ge, E. SIRT6 regulates TNF-a secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-13 (2013). 59. Efroni, S., Duttaqupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., Bazett-Jones, D. P., Le Grice, S., McKay, R. D., Buetow, K. H., Gingeras, T. R., Misteli, T., Meshorer, E. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437-47 (2008). 60. Calvanese, V., Lare, E., Suarez-Alvarez, B., Abu, Dawud, R., Vazquez-Chantada, M., Martinez-Chantar, M. L., Embade, N., Lopez-Nieva, P., Horrilo, A., Hmadcha, A., Soria, B., Piazzolla, D., Herranz, D., Serrano, M., Mato, J. M., Andrews, P. W., Lopez-Larrea, C., Esteller, M. & Fraga, M. F. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA 107, 13736-41 (2010). 61. Wang, F. & Tong, Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 20, 801-8 (2009). 62. Giralt, A., Hondares, E., Villena, J. A., Ribas, F., Diaz-Delfin, J., Giralt, M., Iqlesias, R. & Villarroya, F. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, and essential component of the thermogenic brown adipocyte phenotype. J Biol Chem 286, 16958-66 (2011). 63. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong,Y. & Guan, K. L. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-4 (2010). 64. Bell, E. L. & Guarente, L. The SirT3 divining rod points to oxidative stress. Mol Cell 42, 561-8 (2011). 65. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103, 10224-9 (2006). 66. Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., Grueter, C. A., Harris, C., Biddinger, S., Ilkayeva, O. R., Stevens, R. D., Li, Y., Saha, A. K., Ruderman, N. B., Bain, J. R., Newgard, C. B., Farese, R. V. Jr., Alt, F. W., Kahn, C. R. & Verdin, E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-5 (2010). 67. Shimazu, T., Hirshchey, M. D., Hua, L., Dittenhafer-Reed., K. E., Schwer, B., Lombard, D. B., Li, Y., Bunkenborg, j., Alt, F. W., Denu, J. M., Jacobson, M. P. & Verdin, E. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12, 654-61 (2010). 68. Ahn, B. H., Kim, H. S., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., Deng, C. X. & Finkel, T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105, 14447-52 (2008). 69. Cimen, H., Han, M. J., Yang, Y., Tong, Q., Koc, H. & Koc, E. C. Regulation of succinate degydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-11 (2010). 70. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A. & Gupta, M. P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119, 2758-71 (2009). 71. Jing, E., Emanuelli, B., Hirschey, M. D., Boucher, J., Lee, K. Y., Lombard, D., Verdin, E. M. & Kahn, C. R. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 108, 14608-13 (2011). 72. Hirschey, M. D., Shimazu, T., Jing, E., Grueter, C. A., Collins, A. M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M. M., Schwer, B., Stevens, R. D., Muehlbauer, M. J., Kakar, S., Bass, N. M., Kuusisto, J., Laakso, M., Alt, F. W., Newgard, C. B., Farese, R. V. Jr., Kahn, C. R. & Verdin, E. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44, 177-90 (2011) 73. Ripsin, C. M., Kang, H. & Urban, R. J. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician 79, 29-36 (2009). 74. Pasquier, F. Diabetes and cognitive impairment: how to evaluate the cognitive status? Diabetes Metab 36 Suppl 3, S100-5 (2010). 75. Liang, P., Hughes, V. & Fukagawa, N. K. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemic stress. Diabetes 46, 920-3 (1997). 76. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350, 664-71 (2004). 77. Mogensen, M., Sahlin, K., Fernstrom, M., Glintborg, D., Vind, B. F., Beck-Nielsen, H. & Hojlund, K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56, 1592-9 (2007). 78. Choo, H.J., Kim, J.H., Kwon, O.B., Lee, C.S., Mun, J.Y., Han, S.S., Yoon, Y.S., Yoon, G., Choi, K.M. and Ko, Y.G. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49, 784-91 (2006). 79. Lim, J. H., Lee, J. I., Suh, Y. H., Kim, W., Song, J. H. & Jung, M. H. Mitochondrial dysfunction induces aberrant insulin signaling and glucose utilization in murine C2C12 myotube cells. Diabetologia 49, 1924-36 (2006). 80. Zhang, D., Liu, Z. X., Choi, C. S., Tian, L., Kibbey, R., Dong, J., Cline, G. W., Wood, P. A. & Shulman, G. I. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104, 17075-80 (2007). 81. Liang, H. & Ward, W. F. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30, 145-51 (2006). 82. Raju, I., Kannan, K. & Abraham, E. C. FoxO3a serves as a biomarker of oxidative stress in human lens epithelial cells under conditions of hyperglycemia. PLoS One 8, e67126 (2013). 83. Yechoor, V. K., Patti, M. E., Ueki, K., Laustsen, P. G., Saccone, R., Rauniyar, R. & Kahn, C. R. Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci USA 101, 16525-60 (2004). 84. Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 23, 435-43 (2012). 85. Wang, C. H., Wang, C. C., Huang, H. C. & Wei, Y. H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J 280, 1039-50 (2013). 86. Ge, X., Yu, Q., Qi, W., Shi, X. & Zhai, Q. Chronic insulin treatment causes insulin resistance in 3T3-L1 adipocytes through oxidative stress. Free Rad Res 42, 582-91 (2008). 87. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd Aredn, K. C. & Accili, D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 4, 119-29 (2003). 88. Munekata, K., Sakamoto, K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 45, 642-51 (2009). 89. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. & Croop, L. C. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267-73 (2003). 90. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944-50 (2002). 91. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., Landaker, E. J., Goldfine, A. B., Mun, E., DeFronzo, R., Finlayson, J., Kahn, C. R. & Mandarino, L. J. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100, 8466-71 (2003). 92. Sheuermann-Freestone, M., Madsen, P. L., Manners, D., Blamire, A. M., Buckingham, R. E., Styles, P., Radda, G. K., Neubauer, S. & Clarke, K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107, 3040-6 (2003). 93. Giralt, A. & Villarroya, F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444, 1-10 (2012). 94. Zhang, Y., Marsboom, G., Toth, P. T. & Rehman, J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One 8, e77077 (2013). 95. Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66, 562-73 (2005). 96. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A. & Gupta, M. P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119, 2758-71 (2009). 97. Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., Hayes, McDonald. W., Olivier, A. K., Spitz, D. R. & Gius, D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40, 893-904 (2010).
|