跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃崇甫
研究生(外文):Chung-Fu Huang
論文名稱:乘積碼改良式解碼方法應用於資料藏匿技術
論文名稱(外文):Some Modified Decodings of Product Codes For Data Hiding Techniques
指導教授:陳後守
指導教授(外文):Hou-Shou Chen
口試委員:楊谷章張鴻義
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:41
中文關鍵詞:線性區塊碼乘積碼資料藏匿
外文關鍵詞:Product CodesData hidingLinear Block Codes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是將線性區塊碼運用於資料藏匿上,以提高訊息的藏匿效率、減少藏匿過後的失真。不過當碼的維度提高也會使得解碼的複雜度增加。主要是針對二元訊息提出一個簡單且能夠維持資訊品質兼具容量的嵌入方法,我們使用乘積碼(Product code)去快速嵌入資訊,他是並列式疊帶碼的一種特例,也是傳統線性區塊碼的一種,特點是可藉由選擇單元碼(Component Code)來改變碼的特性,例如碼率和更正能力等。針對他的解碼我們提出幾種修正的解碼方式去降低解碼錯誤率並提升效能,之後再比較各種解碼方式的藏匿效能(Embedding efficiency)與複雜度。
In this study, we make use of Linear Block Codes for Data Hiding to increase the embedding efficiency and decrease the information distortion. However, the higher the dimension of codes is, the more complicated it is to decode . So the main purpose of our study is to propose an easy , quality-maintaining, way for embedding binary information with a max capacity . We can embed information by Product Code which is also a sort of linear block code. It is character by that we can choice Component Code to change the characteristic of code such as code rate and correcting ability. According to its decoding, we propose some modified decoding algorithms to lower the decoding error rate and higher the efficiency. After then, we compare the embedding efficiency and complexity of the algorithms which we proposed.
目錄


Chapter 1 前言1

Chapter 2 簡介 3
2.1 線性區塊碼 3
2.2 漢明權重與最小距離 4
2.3 漢明碼 5
2.4 資料藏匿 7
2.5 二元藏匿理論之失真極限 10
2.6 乘積碼 11

Chapter 3 乘積碼之二元資料藏匿的解碼 15
3.1 行列修改演算法 15
3.2 疊代行列修改演算法 18
3.3 修正型WAE 19
3.4 修正型行列修改演算法 27

Chapter 4 乘積碼效能分析與比較 33
4.1 修正型WAE與疊代之比較 33
4.2 行列修改演算法之比較 35
4.3 綜合比較 36

Chapter 5 結論 38
參考文獻 39
[1] C. E. Shannon, ``A mathematical theory of communication,' Bell Syst.
Tech. J., vol. 27, pp. 379-423, 623-656, Jul./Oct. 1948.

[2] S. Lin and D.J. Costello , Error Control Coding Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information
hiding—a survey,” Proc. IEEE, vol. 87, no. 6, pp. 1062–1078, Jul.
1999.

[4]R. Crandall. "Some notes on steganography". [Online], Available:
http://os.inf.tu-dresden. de/westfeld/Crandall.pdf, 1998.

[5] D. Artz, ”Digital steganography: hiding data within data,” Internet Computing, IEEE, vol. 5, no. 3, pp. 75-80, May-June,

[6] J. Fridrich and D. Soukal, “Matrix embedding for large
payloads,”IEEE Trans. Inf. Forensics Security, vol. 1, no.3, pp. 390–394, 2006.

[7] Jin-Yong Byun, Ki-Hyun Jung, Kee-Young Too,“Improve Data
Hiding Method by Block Parity for Binary Images,”Computer Science and Software Engineering, vol. 3, pp. 931-934, 2008.

[8] Proakis, J. G. Digital Communications, 3rd ed., McGraw- Hill, New
York, 1995.

[9] Ajetrao H., Kulkarni P.J.,“A Novel Scheme of Data Hiding in Binary
Images,”Conference on Computational Intelligence and Multimedia
Applications, vol. 4, pp. 70-77, 2007.

[10] J.-J. Wang, H. Chen, and C.-Y. Lin, “An adaptive matrix embedding
technique for binary hiding with an efficient LIAE algorithm,” World
Scientific and Engineering Academy and Society (WSEAS), vol. 8,
issue 2, Apr. 2012.

[11]H. Rifa-Pous, J. Rifa. "Product perfect codes and steganography".
Digital Signal Processing, 2009, 19(4):764-769.

[12] C. Wang, W. Zhang, J. Liu, and N. Yu,“Fast Matrix Embedding by
Matrix Extending,” IEEE Trans. Inf. Theory, vo7. 1, no. 1, pp. 346–350, Feb. 2012

[13] P. Moulin and R. Koetter, ““Data-hiding codes,” (tutorial
paper),”Proc.IEEE, vol. 93, no. 12, pp. 2083–2127, Dec. 2005

[14] Chin-Chen Chang, The Duc Kieu, Yung-Chen Chou, “A High Payload Steganographic Scheme Based on (7,4) Hamming Code for Digital Images ,”Electronic Commerce and Security, pp. 16-21, 2008.

[15] J.Y. Byun, K.H. Jung and K.Y. Yoo,”Improved Data Hiding Method by Block Parity for Binary Images” Computer Science and Software Engineering, vol. 3, pp. 931 - 934, 2008.

[16]W. Zhang, S. Wang, and X. Zhang, “Improving embedding efficiency of covering codes for applications in steganography,” IEEE Commun. Lett., vol. 11, pp. 680–682, Aug. 2007.

[17] Atta-ur-rahman, S.A. Ghouri, H. Adeel, A. Waheed, “Performance of
Iterative Decoding Algotihm for Product Code”. Proceedings of
International Conference on Computational Aspects of Social
Networks (CASON), Oct. 2011

[18] N. Y. Yu, Y. Kim, and P. J. Lee, “Iterative decoding of product codes
composed of extended hamming codes,” in Proc. ISCC, pp. 732–737,
2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top