|
REFERENCES 1Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011). 2Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338-345, doi:10.1038/nature12625 (2013). 3Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719-724, doi:10.1038/nature07943 (2009). 4Ashley, E. A. The precision medicine initiative: a new national effort. JAMA 313, 2119-2120, doi:10.1001/jama.2015.3595 (2015). 5Chappell, G., Kutanzi, K., Uehara, T., Tryndyak, V., Hong, H. H., Hoenerhoff, M., Beland, F. A., Rusyn, I. & Pogribny, I. P. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. International journal of cancer. Journal international du cancer 134, 2778-2788, doi:10.1002/ijc.28610 (2014). 6Guo, Y., Su, Z. Y. & Kong, A. T. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. Current pharmacology reports 1, 245-257, doi:10.1007/s40495-015-0023-0 (2015). 7Szyf, M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry. Biokhimiia 70, 533-549 (2005). 8Wilting, R. H. & Dannenberg, J. H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 15, 21-38, doi:10.1016/j.drup.2012.01.008 (2012). 9Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature reviews. Genetics 8, 286-298, doi:10.1038/nrg2005 (2007). 10Wang, Y. & Shang, Y. Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319, 160-169, doi:10.1016/j.yexcr.2012.07.019 (2013). 11Paschall, A. V. & Liu, K. Epigenetic Regulation of Apoptosis and Cell Cycle Regulatory Genes in Human Colon Carcinoma Cells. Genom Data 5, 189-191, doi:10.1016/j.gdata.2015.05.043 (2015). 12Rao-Bindal, K. & Kleinerman, E. S. Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma 2011, 679457, doi:10.1155/2011/679457 (2011). 13Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S. N., Hidalgo, O. F., Vanaclocha, V., Baylin, S. B. & Herman, J. G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. The New England journal of medicine 343, 1350-1354, doi:10.1056/NEJM200011093431901 (2000). 14Dobrovic, A. & Simpfendorfer, D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer research 57, 3347-3350 (1997). 15Jaju, R. J., Fidler, C., Haas, O. A., Strickson, A. J., Watkins, F., Clark, K., Cross, N. C., Cheng, J. F., Aplan, P. D., Kearney, L., Boultwood, J. & Wainscoat, J. S. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98, 1264-1267 (2001). 16Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., Casero, R. A. & Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953, doi:10.1016/j.cell.2004.12.012 (2004). 17Hamamoto, R., Saloura, V. & Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 15, 110-124, doi:10.1038/nrc3884 (2015). 18Yang, Y. & Bedford, M. T. Protein arginine methyltransferases and cancer. Nat Rev Cancer 13, 37-50, doi:10.1038/nrc3409 (2013). 19Hamamoto, R. & Nakamura, Y. Dysregulation of protein methyltransferases in human cancer: An emerging target class for anticancer therapy. Cancer Sci 107, 377-384, doi:10.1111/cas.12884 (2016). 20Lu, H., Ouyang, W. & Huang, C. Inflammation, a key event in cancer development. Molecular cancer research : MCR 4, 221-233, doi:10.1158/1541-7786.MCR-05-0261 (2006). 21Fernandes, J. V., Cobucci, R. N., Jatoba, C. A., de Medeiros Fernandes, T. A., de Azevedo, J. W. & de Araujo, J. M. The Role of the Mediators of Inflammation in Cancer Development. Pathol Oncol Res, doi:10.1007/s12253-015-9913-z (2015). 22Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287, G7-17, doi:10.1152/ajpgi.00079.2004 (2004). 23Borm, P. J. & Driscoll, K. Particles, inflammation and respiratory tract carcinogenesis. Toxicol Lett 88, 109-113 (1996). 24Ryazanov, A. G., Pavur, K. S. & Dorovkov, M. V. Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol 9, R43-45 (1999). 25Heine, M., Cramm-Behrens, C. I., Ansari, A., Chu, H. P., Ryazanov, A. G., Naim, H. Y. & Jacob, R. Alpha-kinase 1, a new component in apical protein transport. The Journal of biological chemistry 280, 25637-25643, doi:10.1074/jbc.M502265200 (2005). 26Wang, S. J., Tu, H. P., Ko, A. M., Chiang, S. L., Chiou, S. J., Lee, S. S., Tsai, Y. S., Lee, C. P. & Ko, Y. C. Lymphocyte alpha-kinase is a gout-susceptible gene involved in monosodium urate monohydrate-induced inflammatory responses. J Mol Med (Berl) 89, 1241-1251, doi:10.1007/s00109-011-0796-5 (2011). 27Ko, A. M., Tu, H. P., Liu, T. T., Chang, J. G., Yuo, C. Y., Chiang, S. L., Chang, S. J., Liu, Y. F., Ko, A. M., Lee, C. H., Lee, C. P., Chang, C. M., Tsai, S. F. & Ko, Y. C. ALPK1 genetic regulation and risk in relation to gout. Int J Epidemiol 42, 466-474, doi:10.1093/ije/dyt028 (2013). 28Yamada, Y., Nishida, T., Ichihara, S., Kato, K., Fujimaki, T., Oguri, M., Horibe, H., Yoshida, T., Watanabe, S., Satoh, K., Aoyagi, Y., Fukuda, M. & Sawabe, M. Identification of chromosome 3q28 and ALPK1 as susceptibility loci for chronic kidney disease in Japanese individuals by a genome-wide association study. J Med Genet 50, 410-418, doi:10.1136/jmedgenet-2013-101518 (2013). 29Fujimaki, T., Horibe, H., Oguri, M., Kato, K. & Yamada, Y. Association of genetic variants of the alpha-kinase 1 gene with myocardial infarction in community-dwelling individuals. Biomed Rep 2, 127-131, doi:10.3892/br.2013.190 (2014). 30Reed, G. H. & Wittwer, C. T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical chemistry 50, 1748-1754, doi:10.1373/clinchem.2003.029751 (2004). 31Chen, J. H., Cheng, V. C., Chan, J. F., She, K. K., Yan, M. K., Yau, M. C., Kwan, G. S., Yam, W. C. & Yuen, K. Y. The use of high-resolution melting analysis for rapid spa typing on methicillin-resistant Staphylococcus aureus clinical isolates. Journal of microbiological methods 92, 99-102, doi:10.1016/j.mimet.2012.11.006 (2013). 32White, H. E., Hall, V. J. & Cross, N. C. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clinical chemistry 53, 1960-1962, doi:10.1373/clinchem.2007.093351 (2007). 33Hjelmso, M. H., Hansen, L. H., Baelum, J., Feld, L., Holben, W. E. & Jacobsen, C. S. High-resolution melt analysis for rapid comparison of bacterial community compositions. Applied and environmental microbiology 80, 3568-3575, doi:10.1128/AEM.03923-13 (2014). 34Druml, B. & Cichna-Markl, M. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis. Food Chem 158, 245-254, doi:10.1016/j.foodchem.2014.02.111 (2014). 35Reed, G. H., Kent, J. O. & Wittwer, C. T. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8, 597-608, doi:10.2217/14622416.8.6.597 (2007). 36Chang, Y. C., Chang, Y. S., Chang, C. C., Liu, T. C., Ko, Y. C., Lee, C. C., Chang, S. J. & Chang, J. G. Development of a high-resolution melting method for the screening of TNFAIP3 gene mutations. Oncology reports 35, 2936-2942, doi:10.3892/or.2016.4662 (2016). 37Chang, Y. S., Lin, C. Y., Yang, S. F., Ho, C. M. & Chang, J. G. High-resolution Melting Analysis for Gene Scanning of Adenomatous Polyposis Coli (APC) Gene With Oral Squamous Cell Carcinoma Samples. Appl Immunohistochem Mol Morphol 24, 97-104, doi:10.1097/PAI.0000000000000158 (2016). 38Montgomery, J. L., Sanford, L. N. & Wittwer, C. T. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn 10, 219-240, doi:10.1586/erm.09.84 (2010). 39Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W. & Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114, 97-109, doi:10.1007/s00401-007-0243-4 (2007). 40Thakkar, J. P., Dolecek, T. A., Horbinski, C., Ostrom, Q. T., Lightner, D. D., Barnholtz-Sloan, J. S. & Villano, J. L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 23, 1985-1996, doi:10.1158/1055-9965.EPI-14-0275 (2014). 41Chen, R., Cohen, A. L. & Colman, H. Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future. Curr Treat Options Oncol 17, 42, doi:10.1007/s11864-016-0418-0 (2016). 42Stevens, G. H. Antiepileptic therapy in patients with central nervous system malignancies. Current neurology and neuroscience reports 6, 311-318 (2006). 43Niyazi, M., Siefert, A., Schwarz, S. B., Ganswindt, U., Kreth, F. W., Tonn, J. C. & Belka, C. Therapeutic options for recurrent malignant glioma. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 98, 1-14, doi:10.1016/j.radonc.2010.11.006 (2011). 44Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., Mirimanoff, R. O., European Organisation for, Research, Treatment of Cancer Brain, Tumor, Radiotherapy, Groups & National Cancer Institute of Canada Clinical Trials, Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine 352, 987-996, doi:10.1056/NEJMoa043330 (2005). 45Ohgaki, H., Dessen, P., Jourde, B., Horstmann, S., Nishikawa, T., Di Patre, P. L., Burkhard, C., Schuler, D., Probst-Hensch, N. M., Maiorka, P. C., Baeza, N., Pisani, P., Yonekawa, Y., Yasargil, M. G., Lutolf, U. M. & Kleihues, P. Genetic pathways to glioblastoma: a population-based study. Cancer research 64, 6892-6899, doi:10.1158/0008-5472.CAN-04-1337 (2004). 46Zhao, H., Rybak, P., Dobrucki, J., Traganos, F. & Darzynkiewicz, Z. Relationship of DNA damage signaling to DNA replication following treatment with DNA topoisomerase inhibitors camptothecin/topotecan, mitoxantrone, or etoposide. Cytometry. Part A : the journal of the International Society for Analytical Cytology 81, 45-51, doi:10.1002/cyto.a.21172 (2012). 47Lesimple, T., Riffaud, L., Frappaz, D., Ben Hassel, M., Gedouin, D., Bay, J. O., Linassier, C., Hamlat, A., Piot, G., Fabbro, M., Saikali, S., Carsin, B. & Guegan, Y. Topotecan in combination with radiotherapy in unresectable glioblastoma: a phase 2 study. Journal of neuro-oncology 93, 253-260, doi:10.1007/s11060-008-9774-3 (2009). 48Spyropoulou, A., Piperi, C., Adamopoulos, C. & Papavassiliou, A. G. Deregulated chromatin remodeling in the pathobiology of brain tumors. Neuromolecular medicine 15, 1-24, doi:10.1007/s12017-012-8205-y (2013). 49Turner, B. M. Reading signals on the nucleosome with a new nomenclature for modified histones. Nature structural & molecular biology 12, 110-112, doi:10.1038/nsmb0205-110 (2005). 50Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends in molecular medicine 13, 373-380, doi:10.1016/j.molmed.2007.07.004 (2007). 51Nagarajan, R. P. & Costello, J. F. Epigenetic mechanisms in glioblastoma multiforme. Seminars in cancer biology 19, 188-197, doi:10.1016/j.semcancer.2009.02.005 (2009). 52Northcott, P. A., Nakahara, Y., Wu, X., Feuk, L., Ellison, D. W., Croul, S., Mack, S., Kongkham, P. N., Peacock, J., Dubuc, A., Ra, Y. S., Zilberberg, K., McLeod, J., Scherer, S. W., Sunil Rao, J., Eberhart, C. G., Grajkowska, W., Gillespie, Y., Lach, B., Grundy, R., Pollack, I. F., Hamilton, R. L., Van Meter, T., Carlotti, C. G., Boop, F., Bigner, D., Gilbertson, R. J., Rutka, J. T. & Taylor, M. D. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature genetics 41, 465-472, doi:10.1038/ng.336 (2009). 53Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., O''Rourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K. & Thompson, C. B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478, doi:10.1038/nature10860 (2012). 54Tseng, C. H., Tzeng, C. C., Yang, C. L., Lu, P. J., Chen, H. L., Li, H. Y., Chuang, Y. C., Yang, C. N. & Chen, Y. L. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2. Journal of medicinal chemistry 53, 6164-6179, doi:10.1021/jm1005447 (2010). 55Tseng, C. H., Chen, Y. L., Lu, P. J., Yang, C. N. & Tzeng, C. C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorganic & medicinal chemistry 16, 3153-3162, doi:10.1016/j.bmc.2007.12.028 (2008). 56Liu, Y. P., Chen, H. L., Tzeng, C. C., Lu, P. J., Lo, C. W., Lee, Y. C., Tseng, C. H., Chen, Y. L. & Yang, C. N. TCH-1030 targeting on topoisomerase I induces S-phase arrest, DNA fragmentation, and cell death of breast cancer cells. Breast cancer research and treatment 138, 383-393, doi:10.1007/s10549-013-2441-1 (2013). 57Miremadi, A., Oestergaard, M. Z., Pharoah, P. D. & Caldas, C. Cancer genetics of epigenetic genes. Human molecular genetics 16 Spec No 1, R28-49, doi:10.1093/hmg/ddm021 (2007). 58Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., Gaudet, F., Li, E. & Chen, T. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature genetics 41, 125-129, doi:10.1038/ng.268 (2009). 59Subramaniam, D., Thombre, R., Dhar, A. & Anant, S. DNA methyltransferases: a novel target for prevention and therapy. Frontiers in oncology 4, 80, doi:10.3389/fonc.2014.00080 (2014). 60Shukla, S., Meeran, S. M. & Katiyar, S. K. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer letters 355, 9-17, doi:10.1016/j.canlet.2014.09.017 (2014). 61McEnroe, Frank J. & Fenical, William. Structures and synthesis of some new antibacterial sesquiterpenoids from the gorgonian coral Pseudopterogorgia rigida. Tetrahedron 34, 1661-1664, doi:http://dx.doi.org/10.1016/0040-4020(78)80198-7 (1978). 62Yeo, S. K., Ali, A. Y., Hayward, O. A., Turnham, D., Jackson, T., Bowen, I. D. & Clarkson, R. beta-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother Res 30, 418-425, doi:10.1002/ptr.5543 (2016). 63Jou, Y. J., Chen, C. J., Liu, Y. C., Way, T. D., Lai, C. H., Hua, C. H., Wang, C. Y., Huang, S. H., Kao, J. Y. & Lin, C. W. Quantitative phosphoproteomic analysis reveals gamma-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics 15, 3296-3309, doi:10.1002/pmic.201400568 (2015). 64Lin, Y. C., Er, T. K., Yeh, K. T., Hung, C. H. & Chang, J. G. Rapid Identification of FGFR2 Gene Mutations in Taiwanese Patients With Endometrial Cancer Using High-resolution Melting Analysis. Appl Immunohistochem Mol Morphol, doi:10.1097/PAI.0000000000000114 (2014). 65Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 12, 7-8, doi:10.1038/nmeth.3213 (2015). 66Choi, Y. & Chan, A. P. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, doi:10.1093/bioinformatics/btv195 (2015). 67Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33, W306-310, doi:10.1093/nar/gki375 (2005). 68Lin, W. D., Wu, J. Y., Tsai, F. J., Gau, M. T. & Lee, C. C. Type identification of autosomal dominant polycystic kidney disease by analysis of fluorescent short tandem repeat markers. Journal of the Formosan Medical Association = Taiwan yi zhi 101, 567-571 (2002). 69Tseng, C. H., Tzeng, C. C., Yang, C. L., Lu, P. J., Liu, Y. P., Chen, H. L., Chen, C. Y., Yang, C. N. & Chen, Y. L. Discovery of indeno[1, 2 - c] quinoline derivatives as dual topoisomerases I/II inhibitors: part 3. Molecular diversity 17, 781-799, doi:10.1007/s11030-013-9475-5 (2013). 70Papeo, G., Posteri, H., Borghi, D., Busel, A. A., Caprera, F., Casale, E., Ciomei, M., Cirla, A., Corti, E., D''Anello, M., Fasolini, M., Forte, B., Galvani, A., Isacchi, A., Khvat, A., Krasavin, M. Y., Lupi, R., Orsini, P., Perego, R., Pesenti, E., Pezzetta, D., Rainoldi, S., Riccardi-Sirtori, F., Scolaro, A., Sola, F., Zuccotto, F., Felder, E. R., Donati, D. & Montagnoli, A. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoind ole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. Journal of medicinal chemistry 58, 6875-6898, doi:10.1021/acs.jmedchem.5b00680 (2015). 71Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 31, 455-461, doi:10.1002/jcc.21334 (2010). 72Yang, A. S., Estecio, M. R., Doshi, K., Kondo, Y., Tajara, E. H. & Issa, J. P. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32, e38, doi:10.1093/nar/gnh032 (2004). 73Mazzolini, R., Dopeso, H., Mateo-Lozano, S., Chang, W., Rodrigues, P., Bazzocco, S., Alazzouzi, H., Landolfi, S., Hernandez-Losa, J., Andretta, E., Alhopuro, P., Espin, E., Armengol, M., Tabernero, J., Ramon y Cajal, S., Kloor, M., Gebert, J., Mariadason, J. M., Schwartz, S., Jr., Aaltonen, L. A., Mooseker, M. S. & Arango, D. Brush border myosin Ia has tumor suppressor activity in the intestine. Proceedings of the National Academy of Sciences of the United States of America 109, 1530-1535, doi:10.1073/pnas.1108411109 (2012). 74Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074-1080, doi:10.1126/science.1063127 (2001). 75Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Molecular biology of the cell 13, 1099-1108, doi:10.1091/mbc.01-09-0467 (2002). 76Morey, L. & Helin, K. Polycomb group protein-mediated repression of transcription. Trends in biochemical sciences 35, 323-332, doi:10.1016/j.tibs.2010.02.009 (2010). 77Spyropoulou, A., Gargalionis, A., Dalagiorgou, G., Adamopoulos, C., Papavassiliou, K. A., Lea, R. W., Piperi, C. & Papavassiliou, A. G. Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell proliferation, migration, and colony formation. Neuromolecular medicine 16, 70-82, doi:10.1007/s12017-013-8254-x (2014). 78Chassot, A., Canale, S., Varlet, P., Puget, S., Roujeau, T., Negretti, L., Dhermain, F., Rialland, X., Raquin, M. A., Grill, J. & Dufour, C. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. Journal of neuro-oncology 106, 399-407, doi:10.1007/s11060-011-0681-7 (2012). 79Murai, J., Zhang, Y., Morris, J., Ji, J., Takeda, S., Doroshow, J. H. & Pommier, Y. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. The Journal of pharmacology and experimental therapeutics 349, 408-416, doi:10.1124/jpet.113.210146 (2014). 80Leonetti, C., Biroccio, A., Graziani, G. & Tentori, L. Targeted therapy for brain tumours: role of PARP inhibitors. Current cancer drug targets 12, 218-236 (2012). 81Pradhan, S., Chin, H. G., Esteve, P. O. & Jacobsen, S. E. SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics : official journal of the DNA Methylation Society 4, 383-387 (2009). 82Peng, C. H., Liao, C. T., Peng, S. C., Chen, Y. J., Cheng, A. J., Juang, J. L., Tsai, C. Y., Chen, T. C., Chuang, Y. J., Tang, C. Y., Hsieh, W. P. & Yen, T. C. A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PloS one 6, e23452, doi:10.1371/journal.pone.0023452 (2011). 83Toruner, G. A., Ulger, C., Alkan, M., Galante, A. T., Rinaggio, J., Wilk, R., Tian, B., Soteropoulos, P., Hameed, M. R., Schwalb, M. N. & Dermody, J. J. Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. Cancer genetics and cytogenetics 154, 27-35, doi:10.1016/j.cancergencyto.2004.01.026 (2004). 84Roessler, S., Jia, H. L., Budhu, A., Forgues, M., Ye, Q. H., Lee, J. S., Thorgeirsson, S. S., Sun, Z., Tang, Z. Y., Qin, L. X. & Wang, X. W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer research 70, 10202-10212, doi:10.1158/0008-5472.CAN-10-2607 (2010). 85Laird, P. W., Jackson-Grusby, L., Fazeli, A., Dickinson, S. L., Jung, W. E., Li, E., Weinberg, R. A. & Jaenisch, R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197-205 (1995). 86Ramchandani, S., MacLeod, A. R., Pinard, M., von Hofe, E. & Szyf, M. Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proceedings of the National Academy of Sciences of the United States of America 94, 684-689 (1997). 87Wodarz, A. & Nathke, I. Cell polarity in development and cancer. Nat Cell Biol 9, 1016-1024, doi:10.1038/ncb433 (2007). 88Mazzolini, R., Rodrigues, P., Bazzocco, S., Dopeso, H., Ferreira, A. M., Mateo-Lozano, S., Andretta, E., Woerner, S. M., Alazzouzi, H., Landolfi, S., Hernandez-Losa, J., Macaya, I., Suzuki, H., Ramon y Cajal, S., Mooseker, M. S., Mariadason, J. M., Gebert, J., Hofstra, R. M., Reventos, J., Yamamoto, H., Schwartz, S., Jr. & Arango, D. Brush border myosin Ia inactivation in gastric but not endometrial tumors. International journal of cancer. Journal international du cancer 132, 1790-1799, doi:10.1002/ijc.27856 (2013). 89Rea, S., Eisenhaber, F., O''Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. & Jenuwein, T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599, doi:10.1038/35020506 (2000). 90Czvitkovich, S., Sauer, S., Peters, A. H., Deiner, E., Wolf, A., Laible, G., Opravil, S., Beug, H. & Jenuwein, T. Over-expression of the SUV39H1 histone methyltransferase induces altered proliferation and differentiation in transgenic mice. Mechanisms of development 107, 141-153 (2001). 91Chu, L., Zhu, T., Liu, X., Yu, R., Bacanamwo, M., Dou, Z., Chu, Y., Zou, H., Gibbons, G. H., Wang, D., Ding, X. & Yao, X. SUV39H1 orchestrates temporal dynamics of centromeric methylation essential for faithful chromosome segregation in mitosis. Journal of molecular cell biology 4, 331-340, doi:10.1093/jmcb/mjs023 (2012). 92de Murcia, G., Menissier-de Murcia, J. & Schreiber, V. Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays : news and reviews in molecular, cellular and developmental biology 13, 455-462, doi:10.1002/bies.950130905 (1991). 93Tangutoori, S., Baldwin, P. & Sridhar, S. PARP inhibitors: A new era of targeted therapy. Maturitas 81, 5-9, doi:10.1016/j.maturitas.2015.01.015 (2015). 94Ratnam, K. & Low, J. A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 1383-1388, doi:10.1158/1078-0432.CCR-06-2260 (2007). 95Cimmino, G., Pepe, S., Laus, G., Chianese, M., Prece, D., Penitente, R. & Quesada, P. Poly(ADPR)polymerase-1 signalling of the DNA damage induced by DNA topoisomerase I poison in D54(p53wt) and U251(p53mut) glioblastoma cell lines. Pharmacological research 55, 49-56, doi:10.1016/j.phrs.2006.10.005 (2007). 96Tentori, L., Leonetti, C., Scarsella, M., Muzi, A., Mazzon, E., Vergati, M., Forini, O., Lapidus, R., Xu, W., Dorio, A. S., Zhang, J., Cuzzocrea, S. & Graziani, G. Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 1709-1711, doi:10.1096/fj.06-5916fje (2006). 97Sabbatino, F., Fusciello, C., Somma, D., Pacelli, R., Poudel, R., Pepin, D., Leonardi, A., Carlomagno, C., Della Vittoria Scarpati, G., Ferrone, S. & Pepe, S. Effect of p53 activity on the sensitivity of human glioblastoma cells to PARP-1 inhibitor in combination with topoisomerase I inhibitor or radiation. Cytometry. Part A : the journal of the International Society for Analytical Cytology 85, 953-961, doi:10.1002/cyto.a.22563 (2014). 98Link, A., Balaguer, F. & Goel, A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical pharmacology 80, 1771-1792, doi:10.1016/j.bcp.2010.06.036 (2010). 99Tollefsbol, T. O. Dietary epigenetics in cancer and aging. Cancer treatment and research 159, 257-267, doi:10.1007/978-3-642-38007-5_15 (2014). 100Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. The Journal of nutritional biochemistry 23, 853-859, doi:10.1016/j.jnutbio.2012.03.003 (2012). 101Urvalek, A., Laursen, K. B. & Gudas, L. J. The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes. Sub-cellular biochemistry 70, 129-149, doi:10.1007/978-94-017-9050-5_7 (2014). 102Henning, S. M., Wang, P., Carpenter, C. L. & Heber, D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5, 729-741, doi:10.2217/epi.13.57 (2013). 103Lv, T., Yuan, D., Miao, X., Lv, Y., Zhan, P., Shen, X. & Song, Y. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PloS one 7, e35065, doi:10.1371/journal.pone.0035065 (2012). 104Schulte, J. H., Lim, S., Schramm, A., Friedrichs, N., Koster, J., Versteeg, R., Ora, I., Pajtler, K., Klein-Hitpass, L., Kuhfittig-Kulle, S., Metzger, E., Schule, R., Eggert, A., Buettner, R. & Kirfel, J. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer research 69, 2065-2071, doi:10.1158/0008-5472.CAN-08-1735 (2009). 105Zhao, Z. K., Dong, P., Gu, J., Chen, L., Zhuang, M., Lu, W. J., Wang, D. R. & Liu, Y. B. Overexpression of LSD1 in hepatocellular carcinoma: a latent target for the diagnosis and therapy of hepatoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 34, 173-180, doi:10.1007/s13277-012-0525-x (2013). 106Kurash, J. K., Lei, H., Shen, Q., Marston, W. L., Granda, B. W., Fan, H., Wall, D., Li, E. & Gaudet, F. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Molecular cell 29, 392-400, doi:10.1016/j.molcel.2007.12.025 (2008). 107Binda, O. On your histone mark, SET, methylate! Epigenetics 8, 457-463, doi:10.4161/epi.24451 (2013). 108Jin, L., Hanigan, C. L., Wu, Y., Wang, W., Park, B. H., Woster, P. M. & Casero, R. A. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner. The Biochemical journal 449, 459-468, doi:10.1042/BJ20121360 (2013). 109Jones, P. A. & Gonzalgo, M. L. Altered DNA methylation and genome instability: a new pathway to cancer? Proceedings of the National Academy of Sciences of the United States of America 94, 2103-2105 (1997). 110Chmelarova, M., Krepinska, E., Spacek, J., Laco, J., Beranek, M. & Palicka, V. Methylation in the p53 promoter in epithelial ovarian cancer. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 15, 160-163, doi:10.1007/s12094-012-0894-z (2013). 111Chik, F. & Szyf, M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis 32, 224-232, doi:10.1093/carcin/bgq221 (2011). 112Cheishvili, D., Boureau, L. & Szyf, M. DNA demethylation and invasive cancer: implications for therapeutics. Br J Pharmacol 172, 2705-2715, doi:10.1111/bph.12885 (2015).
|