跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳展慶
研究生(外文):Chan-ChingChen
論文名稱:以溶膠凝膠法製備非當量鈮酸鈉鉀與鋰摻雜之壓電薄膜及其特性探討
論文名稱(外文):The Effects of Non-Stoichiometry and Lithium Doping on the Performances of (Na0.5K0.5)NbO3 –Based Piezoelectric Thin Films Derived via Sol-Gel Methods
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:100
中文關鍵詞:溶膠凝膠法鈮酸鈉鉀鋰摻雜非當量壓電薄膜
外文關鍵詞:Sol-gelNKNLithium-dopedNon-stoichiometricPiezoelectric thin film
相關次數:
  • 被引用被引用:6
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用溶膠凝膠法在Pt(111)/TiO2/SiO2/Si(100)基板上製作無鉛非當量的(Na0.5K0.5)NbO3 (NKN)薄膜,藉由XRD、SEM、AFM、J-V、XPS、P-E、d33等儀器去探討其微結構與電特性的影響。在本研究中發現,NKN薄膜在高溫退火的過程中會使鈉、鉀離子揮發,並導致二次相與氧空缺的產生;這些二次相與氧空缺會使得晶格結構的改變以及電特性的下降。因此,適當的補償鈉、鉀進入薄膜裡有助於改善其電性;此外,本論文還探討了電荷在薄膜裡傳導的機制,此增加了發展成元件的可能性。最後,我們找出最佳鈉、鉀補償的參數,成功的製備出NKN薄膜。
本論文另一個重點為利用過量添加鈉、鉀的最佳參數去摻雜鋰元素進去NKN形成Lix(Na0.5 K0.5)(1-x)NbO3的結構,並探討不同比例的鋰摻雜對微結構與電特性的影響,最後發現適當的鋰摻雜有助於提升殘餘極化量與壓電係數。
In this study, lead-free non-stoichiometric piezoelectric (Na0.5K0.5)NbO3 (NKN) films were fabricated by sol-gel processing on Pt (111)/Ti/SiO2/Si(100) substrates. To investigate the microstructure and electrical properties of films, a serious of measurements such as XRD, SEM, AFM, J-V, XPS, P-E, d33, etc were carried out. It was found that the secondary phases and oxygen vacancies formed when sodium and potassium volatilized via annealing process. Then these secondary phases resulted in poor electrical properties. Therefore, the compensation of sodium and potassium appropriately is necessary. Besides, we tried to clarify the mechanism of current conduction more clearly. At last, the optimum excess mount of sodium and potassium on NKN film were found from this study. In addition to non-stoichiometric NKN film, lithium dopants are doped in our system to form Lix(Na0.5 K0.5)(1-x) NbO3 structure. The effects of lithium doping on the microstructures and electrical properties of the samples were investigated. Finally, we found the remnant polarization and piezoelectric coefficient were Improved effectively through doping lithium appropriately.
摘要 I
Extended Abstract II
誌謝 XII
目錄 XIII
表目錄 XVII
圖目錄 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 基礎理論與文獻回顧 4
2.1 壓電材料 4
2.1.1 正壓電效應 4
2.1.2 逆壓電效應 5
2.1.3 壓電單晶體 6
2.1.4 壓電多晶體 7
2.1.5 壓電複合材料 8
2.2 壓電晶域結構 8
2.2.1 晶體壓電之根源 8
2.2.2 容忍因子 10
2.2.3 晶格與晶系 11
2.3 壓電係數 12
2.4 介電理論 13
2.4.1 介電原理 13
2.4.2 介電損耗 14
2.5 鐵電效應 15
2.6 介電層導電機制 16
2.6.1 蕭基發射(Schottky emission)17
2.6.2 普爾-法蘭克發射(Poole-Frenkel emission)18
2.6.3 歐姆效應(Ohmic) 20
2.7 溶膠凝膠法 21
2.7.1 溶膠凝膠法原理 21
2.7.2 溶膠凝膠法鍍膜方式 23
第三章 實驗方法與量測 24
3.1 實驗流程 24
3.2 實驗步驟 25
3.2.1 基板清洗 25
3.2.2 下電極鍍製 26
3.2.3 溶液配製 27
3.2.4 塗佈與退火 28
3.3 分析儀器 30
3.3.1 alpha step 30
3.3.2 熱重/熱差分析(TG/DTA) 30
3.3.3 XRD 30
3.3.4 SEM 30
3.3.5 AFM 31
3.3.6 XPS 31
3.3.7 介電量測 32
3.3.8 鐵電量測 32
3.3.9 漏電量測 32
3.3.10 壓電係數量測 32
第四章 結果與討論 33
4.1 不同旋轉塗佈條件上對於NKN溶膠之影響 33
4.1.1 溶膠濃度的影響 33
4.1.2 旋塗速度與時間的影響 34
4.1.3 基板的影響 36
4.2 改變Na,K比例對NKN薄膜微結構與電性之影響 38
4.2.1 (N0.5K0.5)NbO3前驅液熱分析 38
4.2.2非當量NKN薄膜的XRD分析 39
4.2.3 非當量NKN薄膜的EDS分析 46
4.2.4非當量NKN薄膜的SEM分析 48
4.2.5非當量NKN薄膜的AFM分析 54
4.2.6非當量NKN薄膜的介電分析 58
4.2.7非當量NKN薄膜的鐵電分析 61
4.2.8非當量NKN薄膜的J-E分析 63
4.2.9非當量NKN薄膜的XPS分析 67
4.2.10非當量NKN薄膜的壓電係數d33分析 69
4.2.11總結 71
4.3 Li摻雜NKN薄膜對微結構與電性之影響 72
4.3.1 LNKN薄膜的XRD分析 72
4.3.2 LNKN薄膜的SEM分析 74
4.3.3 LNKN薄膜的AFM分析 76
4.3.4 LNKN薄膜的介電分析 78
4.3.5 LNKN薄膜的鐵電分析 80
4.3.6 LNKN薄膜的J-E分析 81
4.3.7 LNKN薄膜的XPS分析 85
4.3.8 LNKN薄膜的壓電係數d33分析 88
4.3.9總結 90
第五章 結論與未來展望 91
5.1 結論 91
5.1.1 塗佈條件之探討 91
5.1.2 非當量NKN薄膜之探討 91
5.1.3 不同比例的鋰摻雜之影響 91
5.2 未來展望 92
參考文獻 93
[1] C.-C. Tsai, T.-K. Chiang, and S.-Y. Chu, The improvement of dynamic characteristics of ultrasonic therapeutic transducers using fine-grain PZT-based piezoceramics, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56, pp. 156-166, 2009.
[2] A. Mansingh, R. Nayak, V. Gupta, and K. Sreenivas, Surface acoustic wave propagation in PZT/YBCO/SrTiO3 and PbTiO3/YBCO/SrTiO3 epitaxial heterostructures, Ferroelectrics, vol. 224, pp. 275-282, 1999.
[3] P. Rakbamrung, M. Lallart, D. Guyomar, N. Muensit, C. Thanachayanont, C. Lucat, et al., Performance comparison of PZT and PMN–PT piezoceramics for vibration energy harvesting using standard or nonlinear approach, Sensors and Actuators A: Physical, vol. 163, pp. 493-500, 2010.
[4] H. Ouchi, K. Nagano, and S. Hayakawa, Piezoelectric Properties of Pb (Mg1/3Nb2/3) O3—PbTiO3—PbZrO3 Solid Solution Ceramics, Journal of the American Ceramic Society, vol. 48, pp. 630-635, 1965.
[5] S. Roberts, Dielectric and piezoelectric properties of barium titanate, Physical Review, vol. 71, p. 890, 1947.
[6] Y. SUN, M. ZHAO, C. WANG, C. YIN, X. QI, L. REN, et al., Effects of Ti Deficiency on Properties of Na0. 5Bi4. 5Ti4-xO15 Ceramics, Journal of The Chinese Ceramic Society, vol. 39, pp. 1462-1467, 2011.
[7] K. Singh, V. Lingwal, S. Bhatt, N. Panwar, and B. Semwal, Dielectric properties of potassium sodium niobate mixed system, Materials research bulletin, vol. 36, pp. 2365-2374, 2001.
[8] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, et al., Lead-free piezoceramics, Nature, vol. 432, pp. 84-87, 2004.
[9] S.-Y. Chu, W. Water, Y.-D. Juang, and J.-T. Liaw, Properties of (Na, K) NbO3 and (Li, Na, K) NbO3 Ceramic Mixed Systems, Ferroelectrics, vol. 287, pp. 23-33, 2003.
[10] S. Kimura, S. Tomioka, S. Iizumi, K. Tsujimoto, T. Sugou, and Y. Nishioka, Improved performances of acoustic energy harvester fabricated using sol/gel lead zirconate titanate thin film, Japanese Journal of Applied Physics, vol. 50, 2011.
[11] H. Liu, C. Quan, C. J. Tay, T. Kobayashi, and C. Lee, A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations, Physics Procedia, vol. 19, pp. 129-133, 2011.
[12] M. Lukacs, M. Sayer, and S. Foster, Single element high frequency (( 50 MHz) PZT sol gel composite ultrasound transducers, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 47, pp. 148-159, 2000.
[13] P. Kirby, Q. Su, E. Komuro, Q. Zhang, M. Imura, and R. Whatmore, PZT thin film bulk acoustic wave resonators and filters, in 2001 IEEE international frequency control symposium and PDA exhibition, 2001.
[14] H. J. Lee, C. W. Ahn, S. H. Kang, I. W. Kim, J. S. Lee, and B. M. Jin, The ferroelectric properties of (Na0.5K0.5)NbO3 thin films fabricated by rf-magnetron sputtering, Ferroelectrics, vol. 335, pp. 227-232, 2006.
[15] S. Yamazoe, Y. Miyoshi, K. Komaki, H. Adachi, and T. Wada, Ferroelectric Properties of (Na0.5K0.5)NbO3-Based Thin Films Deposited on Pt/(001) MgO Substrate by Pulsed Laser Deposition with NaNbO3 Buffer Layer, Japanese Journal of Applied Physics, vol. 48, p. 0913, 2009.
[16] C.-R. Cho and B.-M. Moon, (Na, K) NbO3 Thin Films Using Metal-Organic Chemical Vapor Deposition, Integrated Ferroelectrics, vol. 45, pp. 39-48, 2002.
[17] 吳朗, '電子陶瓷-壓電,' 全欣科技圖書, vol. 7, 1994.
[18] 朱建國, 孫小松, 李衛, 電子與光電子材料, 北京國防工業出版社, pp. 48, 2007.
[19] 化學之旅工作室, 快樂化學, 安徽省淮南市快樂化學網, 石英, 2009.
[20] B. Jaffe, Piezoelectric ceramics, Academic Press London, vol. 115, 1971.
[21] C. Kittel and P. McEuen, Introduction to solid state physics vol. 8: Wiley New York, 1986.
[22] 邱碧秀, 電子陶瓷材料, 徐氏基金會, 1992.
[23] Pieter Kuiper, Dielectric responses , en.wikipedia, 2010.
[24] 吳朗, '電子陶瓷-介電,' 全欣科技圖書, vol. 1, 1994.
[25] 翁逸鵬, 鈮酸鈉鉀壓電陶瓷之製作及其在表面聲波濾波器的應用, 國立成功大學電機工程研究所碩士論文, 2005.
[26] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley & Sons, 2006.
[27] 林玫均, 以溶膠凝膠法製備AZO透明導電薄膜及其在薄膜電晶體上之應用, 國立台南大學材料學系碩士論文, 2012.
[28] http://www.centexbel.be/solgel-treatment.
[29] D. Bornside, C. Macosko, and L. Scriven, Spin coating: One‐dimensional model, Journal of Applied Physics, vol. 66, pp. 5185-5193, 1989.
[30] 高慶華, 鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究, 國立成功大學物理研究所碩士論文, 2008.
[31] 江振煜, 利用溶膠凝膠法在熔融石英玻璃基板上製作摻鍺的光學波導, 國立清華大學電機研究所碩士論文, 2004.
[32] 光華, 鄧金祥, 奈米薄膜技術與應用, 五南圖書出版股份有限公司, 2005.
[33] 劉桂珍, 周小榮, 何永, 週建, PLD技術在功能薄膜材料研究中的應用, 中國水運, 2007.
[34] 田春林, 光學薄膜應力與熱膨脹係數量測之研究, 國立中央大學光電科學研究所碩士論文, 2000.
[35] H. Al-Shareef, K. Gifford, S. Rou, P. Hren, O. Auciello, and A. I. Kingon, Electrodes for ferroelectric thin films, Integrated Ferroelectrics, vol. 3, pp. 321-332, 1993.
[36] P. C. Goh, K. Yao, and Z. Chen, Titanium diffusion into (K0. 5Na0. 5) NbO3 thin films deposited on Pt/Ti/SiO2/Si substrates and corresponding effects, Journal of the American Ceramic Society, vol. 92, pp. 1322-1327, 2009.
[37] 李傳山, 沈建興, 張雷, 董金美, PZT壓電厚膜的研究現狀與進展, 矽酸鹽通報, vol. 25, pp. 103-107, 2006.
[38] C. Kang, J.-H. Park, D. Shen, H. Ahn, M. Park, and D.-J. Kim, Growth and characterization of (K0.5Na0.5)NbO3 thin films by a sol–gel method, Journal of sol-gel science and technology, vol. 58, pp. 85-90, 2011.
[39] Q. Yu, J. F. Li, Y. Chen, L. Q. Cheng, W. Sun, Z. Zhou, et al., Effect of Pyrolysis Temperature on Sol–Gel Synthesis of Lead‐free Piezoelectric (K, Na)NbO3 Films on Nb:SrTiO3 Substrates, Journal of the American Ceramic Society, vol. 97, pp. 107-113, 2014.
[40] X. Yan, W. Ren, X. Wu, P. Shi, and X. Yao, Lead-free (K, Na) NbO ferroelectric thin films: Preparation, structure and electrical properties, Journal of Alloys and Compounds, vol. 508, pp. 129-132, 2010.
[41] B. Ma, G. Goh, and J. Ma, Crystallinity and photocatalytic activity of liquid phase deposited TiO2 films, Journal of electroceramics, vol. 16, pp. 441-445, 2006.
[42] G. K. Goh, X. Han, C. P. Liew, and C. S. Tay, Crystallinity and orientation of solution deposited anatase TiO2 films, Journal of The Electrochemical Society, vol. 152, pp. C532-C536, 2005.
[43] K. Ishikawa, N. Okada, K. Takada, T. Nomura, and M. Hagino, Crystallization and Growth Process of Lead Titanate Fine Particles from Alkoxide-Prepared Powders, Japanese Journal of Applied Physics, vol. 33, p. 3495, 1994.
[44] G. Shirane, R. Newnham, and R. Pepinsky, Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3, Physical Review, vol. 96, pp. 581-588, 1954.
[45] I. Souza, A. Simoes, S. Cava, L. Cavalcante, M. Cilense, E. Longo, et al., Ferroelectric and dielectric properties of Ba0. 5Sr0. 5 (Ti0.8Sn0.2)O3 thin films grown by the soft chemical method, Journal of Solid State Chemistry, vol. 179, pp. 2972-2976, 2006.
[46] J. G. Simmons, Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems, Physical Review, vol. 155, p. 657, 1967.
[47] M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, and C. Buchal, Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates, Applied physics letters, vol. 82, pp. 439-441, 2003.
[48] D. Lin, K. Kwok, and H. Chan, Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1−xLix(Nb1−yTay)O3 lead-free piezoelectric ceramics, Journal of Applied Physics, vol. 102, p. 034102, 2007.
[49] Y. Kizaki, Y. Noguchi, and M. Miyayama, Defect control for low leakage current in K 0.5Na 0.5NbO3 single crystals, Applied physics letters, vol. 89, pp. 142910-142910-3, 2006.
[50] 陳品任, 利用原子力顯微術研究PZT薄膜之微觀鐵電特性, 國立清華大學材料科學工程學系碩士論文, 2001.
[51] K. Tanaka, K.-I. Kakimoto, H. Ohsato, and T. Iijima, Composition Dependence of Crystallinity for Lead-Free (Li, Na, K) NbO3 Powder and Thin Films Fabricated by Sol-Gel Process, Ferroelectrics, vol. 358, pp. 175-180, 2007.
[52] H. Du, F. Tang, D. Liu, D. Zhu, W. Zhou, and S. Qu, The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics, Materials Science and Engineering: B, vol. 136, pp. 165-169, 1/25/ 2007.
[53] Y.-H. Joo, J.-C. Woo, and C.-I. Kim, Etching properties of Na0.5K0.5NbO3 thin films by using inductively coupled CF4/Ar plasma, Microelectronic Engineering, vol. 114, pp. 1-6, 2014.
[54] X. Sun, J. Deng, J. Chen, C. Sun, and X. Xing, Effects of Li substitution on the structure and ferroelectricity of (Na, K) NbO3, Journal of the American Ceramic Society, vol. 92, pp. 3033-3036, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊