跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林庭誼
研究生(外文):Tin-Yi Lin
論文名稱:陽極遮罩下以磁控濺鍍錫薄膜負極材料與電化學特性之研究
論文名稱(外文):The electrochemical performance forward lithium of nano crystalline Sn thin films deposited by anode shielded sputtering.
指導教授:林新智林新智引用關係
指導教授(外文):Hsin-Chih Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:96
中文關鍵詞:陽極遮罩鋰二次電池鈍化層
外文關鍵詞:anode shieldingsolid electrolyte interphaseSnLi-ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著3C電子產品日益輕薄短小,因此,電源供給就成了電路設計上的一大考量,許多傳統電池生產技術均已達到極限,難以將厚度做到毫米以下,而且生產成本將大幅度上升,唯有以半導體IC工業常用之製程,才能夠符合需求,無論CVD或PVD,均可輕而易舉製作出微米等級,並可整合電子元件而相互連接,獨立提供元件電能所需,尤其適合小電流或低功率消耗的元件,例如:微機電系統(MEMS)、記憶體備用電源(memory back-up power source)。
本研究選擇具高發展潛力、低成本的Sn作為薄膜電池負極材料,藉由外加一陽極遮罩(anode shielding)輔助磁控濺鍍沉積Sn薄膜電池,以期改變電漿能量與電漿型態,獲得不同之電漿特性,現場調控薄膜表面型態,進而達到臨場改質(in-situ modification),成功地開發出高電容量及高循環能力之負極薄膜材料,並有效大幅度提升其薄膜電化學特性。研究中發現,添加陽極遮罩於製程中,可以有效降地基座上的電流(離子通量),減少電漿能量,降低錫離子孕核、成長團聚成大晶粒,而具有極細小的奈米晶粒(~10nm);同時在有、無陽極遮罩下,施以基座負偏壓(0VDC ~-120VDC)並探討基座上電流與負偏壓之間關係,暸解陽極遮罩輔助下,電漿特性的不同。在電化學之研究中,將針對陽極遮罩下所造成晶粒尺寸上的差異,對於錫薄膜電池(合金系統)在充放電循環(life time)下有何影響;在適當負偏壓-50VDC下,改善薄膜緻密性,增加薄膜於電化學之穩定性,在長期充放電循環下,發揮極佳電化學特性;並研究探討錫薄膜電池循環於不同工作電位(2.50V-0.05V與1.00V-0.05V),循環壽命下電化學特性的不同,並針對可能造成循環能力不佳(循環於1.00V-0.05V之間),外加人工鈍化層(artificial SEI)加以保護下,展現了極佳循環能力,直至80次循環之後,仍有468.23 mAh/g之電容量。
Sn thin film anodes have been prepared using rf magnetron sputtering. With appropriate anode shielding during deposition, the film crystallity and surface morphology can be well controlled. The set-up of the anode shielding changed the plasma ion density, resulting in different ion flux available on the substrate as bias was provided. Grazing angle X-ray diffractometer and field emission scanning electron microscope were used to characterize the films crystallity and surface morphology. The electrochemical properties of the thin film anodes deposited under various conditions were measured and compared. Sn thin film anodes deposited with anode shielding can develop fine and smooth morphology with nano particles (5-10 nm). High reversible capacity with low capacity can be obtained. The formation of solid electrolyte interphase was found to be a critical factor for cycling properties of Sn thin film anodes. A ultra thin SnO2 was deposited deliberately to form an artificial SEI, and the cycling properties of the Sn thin films anodes was improved significantly.
目錄
中文摘要……………………………………..…………………...................I
英文摘要
總目錄……………………………………………………………………...Ⅲ
圖目錄……………………………………………………………………...Ⅴ
表目錄……………………………………………………………………...Ⅸ
第一章、緒論
1.1 薄膜電池概論……………………………………………………….….1
1.2 研究動機………………………………………….………………….…3
第二章、文獻回顧…………………………………………………………11
2.1 鋰離子二次電池的起源與簡介………………………………………11
  2.1.1 鋰電池與工作原理………………………………………...……11
2.1.2 鋰離子二次電池………………………………………...………12
  2.1.2 固態薄膜鋰電池…………………………………………...……13
2.2 負極材料………………………………………………………………16
2.2.1 石墨碳材………………………………………………...………16
2.2.2 錫與二氧化錫材料………………………………………...……18
2.2.3 鋰合金材料…………………………………………………...…23
第三章、實驗方法
3.1 實驗流程………………………………………………………………34
3.2 薄膜試片製備…………………………………………………………35
3.3 電漿診斷………………………………………………………………36
3.3.1 基座電流電壓之量測……………………………………...……36
3.3.2 基材溫度之量測………………………………………………...36
3.4 材料分析與量測技術…………………………………………………37
3.4.1 掠角X光繞射儀(Grazing Incidence X-ray Diffractometer) ...…37
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope) …….……38
3.4.3 薄膜厚度之量測…………………………………………..……38
3.5 電池元件組裝與電化學分析…………………………………………39
3.5.1 負極之電極製作………………………………………………..39
3.5.2 鈕扣型電池之組裝……………………………………………..39
3.5.3 電池充放電性能測試…………………………………………..40
3.5.4 循環伏安測試…………………………………………………...40
第四章、實驗結果與討論…………………………………………………47
4.1 電漿量測………………………………………………………………47
4.1.1 基座電漿量測………………………………………………...…47
4.1.2 基座溫度量測…………………………………………………...49
4.2 膜厚量測……………………………………………………….……..49
4.3 結晶結構………………………………………………………….…..50
4.3.1 陽極遮罩之影響………………………………………………..50
4.3.2 基座負偏壓之影響……………………………………………..51
4.4 微結構與表面型態……………………………………………………52
4.4.1 有、無陽極遮罩之影響………………………………………….52
4.4.2 負偏壓之表面型態…………………………………………...…53
4.5 錫負極薄膜之電化學行為……………………………………………54
4.5.1 充放電性質……………………………………………………….54
4.5.2 氧化還原反應………………………………………………..…..56
4.5.3 電池循環壽命……………………………………………………57
4.5.4 錫負極薄膜之表面改質………………………………………….60
4.5.4.1 複合薄膜之結晶結構與表面型態………………………..…60
4.5.4.2 複合薄膜之電化學行為……………………………………..61
4.5.4.3 複合薄膜之循環壽命………………………………………..62
4.5.4.4 總結-錫負極電容量衰退之原因……………………………63
4.5.4.4.1 體積變化………………………………………………...63
4.5.4.4.2 保護效應……………………………………………….64
第五章、結論………………………………………………………………90
第六章、未來工作…………………………………………………………92
參考文獻……………………………………………...……………………93
參考文獻

[ ] R. Koksbang, J. Barker, H. Shi and M. Y. Saidi, Solid State Ionics, 84,1(1995�w.
[2] 洪為民,工業材料117 期,p. 54(1996)。
[3] 楊家諭,工業材料126 期,p. 115(1997)。
[4] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, Solid State Ionics, 135, pp. 33�{45 (2000).
[5]T. Handa, S. Shoji, S.Ike, S. Takeda, and T. Sekiguchi, International Conference on Sloid-State Sensors and Actuators, Chicago, June, pp. 16–19 (1997).
[6] http://www.ssd.ornl.gov/Programs/BatteryWeb/Applications.html

[7]John B. Goodenough, Solid State Ionics, 69, p. 184 (1994).
[8]K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull., 17, p. 783 (1994).
[9]http://www.ssd.ornl.gov/BatteryWeb/cLiCoO2.html
[10]P. Brike, W. F. Chu, and W. Weppner, Solid State Ionics, 93, p. 1 (1997).
[11]Y. Idota, US Pateut No.5, 478, p. 671 (1995).
[12]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and, J.-M. Tarascon, Nature, 407, p. 496 (2000).
[13]楊模樺,工業材料157 期,p. 144 (1989)。
[14]J. Hajek, French Patent, 8, p. 10 (1949).
[15]D. Linden, “Handbook of Batteries and Fuel Cells”, McGraw-Hill Inc., Chap. 11, pp. 1–2 (1984).
[16]J. Tamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, J. Power Source, 74, pp. 219–227 (1998).

[17]J. O. Besenhard , M. Hess and P. Komeda , Solid State Ionics , 40/41 , 525(1989)
[18]6. M. Lazzari and B. Scrosati , “A Cyclable Lithium Organic Electrolyte Cell
[19] M. Antaya, J.R. Dahn , J.S. Preston, E. Rossen and J.N. Reimers, J. Electrochem. Soc., 140(1993) 575.
[20] J. B. Bates and N.J. Dudney , “Thin Film Rechargeable Lithium Batteries for
Implantable Devices” , American Society for Artificial Internal Organs , Inc. Vol
43 , No. 5 , M644 (1997)
[21] J.B. Bates , N.J. Dudney , G.R. Gruzalski , R.A. Zuhr , A. Choudhury , C.F.
Luck , J. Power Sources 43–44 (1993) 103.
[22]X. Yu, J.B. Bates, G.E. Jellison, B.C. Sales, J. Electrochem. Soc. 144 (1997)524.
[23]M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Advanced Materials, 10, p. 725 (1998).
[24]J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 54, p. 228 (1995).
[25]E. Peled, J. Electrochem. Soc., 126, p. 2047 (1979).
[26]H. Shi, J. Barker, M. Y. Saidi and R. Koksbang, “Structure and Lithium
Intercalation Properties of Synthetic and Natural Graphite”, J. Electrochem. Soc.,143, 3466 (1996).
[27]姚慶意、陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 100, 57 (1996).
[28]陳金銘, “高容量碳粉材料”, 工業材料, 133, 85 (1997).
[29]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science, 276, p. 1395 (1997).
[30]I. A. Courtney and J. R. Dahn, J. Electrochem. Soc., 144, p. 2045 (1997).
[31] M. Winter and J. O. Besenhard, “Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites”, Electrochimica Acta, 45, 31 (1999).p. 31 (1999).
[32]T. Shodai, Y. Sakurai, and T. Suzuki, Solid State Ionics, 122, p. 85 (1999).
[33]F.M.Amanullah,K.J.Pratap,V.Hari Babu, Materials Scienceand Engineering B52,93(1998).
[34] J.C.Giuntini,W.Granier,J.V.Zanchetta,J.Mater.Sci.Lett.,9,1383(1990).
[35] H. Pink,L.Treitinger and L. Vite,Japanese Journal ofapplied physics vol.19,No.3,513(1980)
[36] L.Bruno,C.Pijolat and R.Lalauze ,Sensors and ActuatorsB,18-19,195(1994).
[37] W.Liu,X.Huang,Z.Wang,H.Li,L.Chen,J.Electrochem.Soc., Vol.145,No.1,59(1998).
[38] R.Kanno,Y. Takeda, T Ichikawa, K. Nakanishi and O. Yamamoto,J. Power
Sources,26,535(1989).
[39] J.M.Tarascon and D.Guyomard,J.Electrochem.Soc.,138,2864(1991).
[40] Z.X.Shu,R.S.McMillan and J.J.Murray, J. Electrochem. Soc.,140, 922(1993).
[41] R.Fong, U.Sack and J.R.Dahn, J. Electrochem. Soc., 137, No.7, 2009(1990).
[42] J.R.Dahn,R.Fong and M.J.Spoon, Phys. Rev., B42, 424(1990).
[43] X.Qiu, Q.Liu and L.Yang,Solid State,Ionics,60.351(1993).
[44] M. Mohri, N. Yanagisawa, Y. Tajima , H. Tankka, T. Mitate,S. Nakajima, Y. Yoshimoto M. Yoshida, T. Suzuki and H. Wada,J. Power Sources,26, 545(1989).
[45] A.Mabuchi,H.Fujimoto,K.Tokumitus and T.Kasuh,J. Electrochem.Soc.,142,3049(1995).
[46] C.E.Lowell,J.Am.Ceram.Soc.,50,142(1967).
[47] J.S.Xue and J.R.Dahn,J.Electrochem.Soc.,142,3668 (1995).
[48] T.Zheng,Q.Zhong and J. R. Daha, J. Electrochem.Soc.,142,L211(1995).
[49] 工業材料130 期,108-109(1997).
[50]A.A. Bolzan, C. Fong,B. J.Kennedy and C. J.Howard, Acta
Cryst.B53, 373(1997).
[51]J. G. Zheng, X.Pan, M. Schweizer, U.Weimar W. Gopel,
Mruhle,Journal of Materials Science 34, 2317(1996).
[52] Fuji Photo Film Co., Ltd., Euro. Pat. 0,651,450, A1(1995).
[53] J.Isidorsson, C.G. Granqvist, L. Haggstorm, and E.Nordstrom, J.Appl.Phys.,80,2367(1996).
[54] B. Orel, U. Lavrenic-Stangar, and K. Kalcher. J. ElectronMater.,9,727(1980).
[55] T.Brousse,R. Retoux, U. Herterich, and D. M. Schleich, J. Electrochem.Soc.,Vol. 145, No. 1, (1998)
[56] R. A. Huggins, Electrochemical Society Proceedings Volume
97-18,1(1997).

[57] R.A. Huggins, J. Power Sources 81/82, 13–19 (1999).

[58] J. Wang, I. D. Rasitrick and R. A. Huggins, J. Electrochem. Soc.133,457(1986).

[59]J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics, 90, 281 (1996).
[60]S. D. Beattie, T. D. Hatchard, A. Bonakdarpour, K. C. Hewitt, and J. R. Dahn, J. Electrochem. Soc., 150 (6), A701 (2003).
[61] I.A. Courtney, J.R. Dahn, J. Electrochem. Soc. 144, (9) 2943 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top