跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖威智
論文名稱:薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究
論文名稱(外文):Treatment and Recycling of Oragnic Wastewater formTFT-LCD Industry
指導教授:陳重男陳重男引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:141
中文關鍵詞:生物薄膜程序MBRTFT-LCD製程廢水逆滲透系統RO臭氧/雙氧水O3/H2O2程序冷卻水塔補充水
外文關鍵詞:membrane bioreactorTFT-LCD wastewaterReverse Osmosishydrogen peroxide (H2O2)radiator water resupply system
相關次數:
  • 被引用被引用:38
  • 點閱點閱:2663
  • 評分評分:
  • 下載下載:260
  • 收藏至我的研究室書目清單書目收藏:3
薄膜電晶體液晶顯示器(Thin Film Transistor Liquid Crystal Display, TFT-LCD)製造業為台灣近年來蓬勃發展之高科技產業。在大尺寸TFT-LCD產業方面,去年我國總產值居世界第三位,占有率23.3%(僅次於南韓和日本) 。預估今年將提升至36%,超越日本,逼近南韓,希望在2006年前再超越南韓,產值可達1.3兆元,成為全球第一大TFT-LCD顯示器供應國。其中製程使用大量之現像液(Developer)、剝離液(Stripper)及清洗溶劑(Rinse)等有機物質,由於其成分複雜,且含有高強度有機氮、硫類物質。面對台灣日益增加之TFT-LCD製造廠,估計未來每日所產生之有機廢水量將達到100,000噸。 由於其有機廢水量約佔總廢水量之三分之一以上,若以目前一般設廠環評要求,欲達成回收率80%以上目標,則有機廢水回收再利用將勢在必行,而回收再利用之技術應積極的研究與開發 。本研究為利用生物薄膜(MBR)處理程序配合逆滲透(RO)系統及臭氧(O3)、臭氧/雙氧水(O3/H2O2)程序之高級氧化單元,處理TFT-LCD製程有機廢水,比較各程序之處理水質與各用水標準間之差異。
於實驗試驗期間,經污泥馴養及控制適當微生物生長條件下,各槽中MLSS濃度可依進流廢水性質、流量或不同食微比條件下,控制各槽中MLSS 濃度於4560~7260mg/L間,而放流水中SS濃度則因薄膜單元之有效固液分離作用幾乎測不出任何SS濃度。於有機碳之去除上,因槽中MLSS 濃度較傳統處理程序為高,故COD之平均去除效率則可達98.5% ,放流水COD 濃度小於15 mg/L。對於TOC之去除上則可達到更佳之處理效率,平均去除效率分別為97.4%,放流水濃度小於6.73mg/L。至於有機氮之去除效能,生物薄膜程(MBR)序對於總氮及T K N 之去除效率可達74.1 %及88.6 %,但由放流水中氮類大部分為硝酸鹽氮及氨氮形式看出,薄膜單元有效控制污泥停留時間(>30天),使好氧槽中可產生有效之硝化作用,轉化有機氮為硝酸鹽氮及氨氮,然而於整個試驗期間中,總氮之去除效率均可達76%,可看出生物薄膜程序於操作穩定性上及去除效率上,均較傳統生物程序為高。
目前經生物薄膜程序處理之有機廢水水質COD:13.2 mg/L、TOC:6.73 mg/L、NH3-N約16.8 mg/L,導電度約1979μs/cm。因已經UF過濾其SDI值小於3,其處理水可直接進入逆滲透系統處理。在進入逆滲透系統處理後,處理水COD低於偵測極限(<5mg/L),TOC小於1.5 mg/L,導電度亦小於30.7μs/cm,其處理水相當不錯已接近自來水質,建議可回收至冷卻水塔補充水系統。
而再經由後段臭氧處理時,若單獨以臭氧對TOC進行催化降解時,TOC濃度由1.479 mg/L被降解0.92 mg/L,並不符合回收到製程用水之水質要求,TOC需小於0.8 mg/L之要求。於是便在臭氧系統中加入雙氧水,做為催化劑。實驗結果發現加入雙氧水後,可有效的降解水中TOC濃度至0.663 mg/L,符合回收到製程用水之水質要求,且在高級氧化程序過程中,經過臭氧(O3)、臭氧/雙氧水(O3/H2O2)程序後,水中導電度亦在60 μs/cm之內,因此可考慮回收至超純水用水水源。
Thin Film Transistor Liquid Crystal Display (TFT-LCD) manufacturing industry is a rising and flourishing technological industry in Taiwan recently. Regarding the large size TFT-LCD industry, Taiwan’s total yield is the third in world (only less than South Korea and Japan). It is expected that the yield will increase to 36% and be better than Japan and close to South Korea. It is hoped that it will be better than South Korea before 2006, and the yield will bring in 38 billion USD. Taiwan will supply the most TFT-LCD monitors in the world. During the process of manufacturing, a lot of organic matter is used in activities, such as developing, stripping, and rinsing. The organic matter’s composition is complex and includes strong organic nitrogen and sulfur. It is estimated that the organic wastewater from the process will be more than 100,000 tons per day. The quantity of organic wastewater is over one third of the total wastewater quantity for the industry. According to the requirements of environmental estimation, the ratio of recycling should be higher than 80%. It is necessary to recycle the organic wastewater and the technology of recycling should be researched and developed actively.
The study is using the contra-osmotic system and a high-level oxidization process of ozone or ozone/hydrogen peroxide to treat TFT-LCD organic wastewater and to compare the different processes of treatment with the standard of water.
In the experiment, via the growing of sludge and controlling the factors of growing appropriate microbes, we can control the concentration of MLSS between 4560 and 7260 mg/L according to the quality of in/out wastewater, flow capacity, and food/MLSS ratio. However, the concentration of SS in the effluent can almost not be measured because of the separating reaction of solids and liquids in the membrane. For removing organic carbon, the average effect of removing COD can be 99.5%, and the concentration of COD in the effluent is lower than 15 mg/L because the concentration of MLSS in our process is higher than in the traditional process. In our experiment, the TOC removal also has a good treatment effect, for example, the average level of removal is 97.4% and the concentration of the effluent is lower than 6.73 mg/L. For the effect of organic nitrogen removal, the level of removal for the membrane bioreactor can be as high as 74.1% for total nitrogen removal and 88.6% for TKN. Because the nitrogen in the effluent shows in the forms of nitrate and ammonia, and the effectively controlled remaining time of the membrane is longer than 30 days, the nitration changes the organic nitrogen to nitrate and ammonia in the aerobic tank. However, the effect of total nitrogen removal is able to reach 76% during the experiment. According to this data, the stability of the procedure and the effect of removal in the membrane bioreactor are all better than in a traditional bioreactor.
At present, the qualities of organic wastewater treated via a membrane bioreactor are COD: 13.2 mg/L, TOC: 6.73 mg/L, NH3-N about 16.8 mg/L, and conductivity about 1,979 μs/cm. Because the water has been filtered from UF and the SDI value is smaller than 3, the water can flow into RO directly to be treated. After the treated water flows into RO, if the COD is too low to detect (< 5 mg/L), the TOC is lower than 1.5 mg/L, and the conductivity is also lower than 30.7 μs/cm. The qualities of treated water are similar to tap water. As a suggestion, we could recycle the water into a radiator system. Then, after the second ozone treatment, the TOC is lower than 0.663 mg/L, and the conductivity is within the required quality. The water is able to be considered to be recycled to a radiator water resupply system.
If it is alone to catalyze the decreasing of TOC concentration via the second ozone treatment, it will not conform to the requirement of TOC being lower than 0.8 mg/L, according to the requirement of recycled water quality, because the concentration of TOC only will decrease to 0.92 mg/L from 1.479 mg/L. That is why hydrogen peroxide is added as a catalyst in the ozone system. It has been discovered from the experiment that the concentration of TOC can be decreased to 0.663 mg/L after adding hydrogen peroxide, which conforms to the requirement of recycled water quality. Also, during the high-level oxidization process, the conductivity is within 60 μs/cm after the process of ozone and ozone/hydrogen peroxide. It can even be considered to recycle the water to be reused in the first step of the TFT-LCD production process.
中文摘要
英文摘要
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1 研究緣起 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 薄膜電晶體液晶顯示器(TFT-LCD)產業特性 3
2-1-1 TFT-LCD產業之現況 3
2-1-2 TFT-LCD面版製程簡介 4
2-1-3 薄膜電晶體液晶顯示器(TFT-LCD)製程廢水來源 6
2-2 無氧/好氧生物除氮程序原理 7
2-2-1 硝化作用 10
2-2-2 脫氮作用 15
2-3 生物薄膜(MBR)程序 19
2-3-1 薄膜分類、材質特性及應用 19
2-3-2 薄膜結構特性及選擇 21
2-3-3 薄膜操作之影響因子 23
2-3-4 薄膜使用之限制及解決方法 25
2-4 生物薄膜(MBR)程序基本原理 29
2-4-1 生物薄膜程序操作型式 30
2-4-2 生物薄膜程序之優點 32
2-5 逆滲透法(RO) 44
2-5-1 逆滲透法之原理 44
2-5-2 逆滲透膜之去除機制 45
2-6 臭氧(O3) 47
2-6-1 臭氧之基本性質與產生 47
2-6-2 臭氧濃度偵測方法 50
2-6-3 臭氧自解行為 52
2-6-4 臭氧反應程序 55
2-6-5 添加過氧化氫對臭氧化的影響 62
第三章 實驗方法 64
3-1 實驗設計 64
3-1-1 無氧/好氧生物程序 64
3-1-2 薄膜單元 67
3-1-3 無氧/好氧生物薄膜(MBR)程序 70
3-1-4 逆滲透處理(RO)程序 71
3-1-5 臭氧處理(O3)程序 73
3-2 實驗分析項目與方法 75
3-3 實驗分析設備及藥品 76
3-3-1 實驗分析設備 76
3-3-2 實驗分析藥品 78
3-3-2-1 生物程序用藥 78
3-3-2-2 水質分析用藥 78
3-3-2-3 逆滲透系統用藥 79
3-3-2-4 臭氧系統用藥 79
3-4 實驗方法 80
3-4-1 實驗水樣來源 80
3-4-2 污泥的馴養 81
3-4-3 實驗步驟 83
3-4-3-1 無氧/好氧生物薄膜程序 83
3-4-3-2 薄膜分離單元 83
3-4-3-3 逆滲透(RO)處理單元 84
3-4-3-4 臭氧/雙氧水系統試驗 85
第四章 結果討論 86
4-1 無氧/好氧生物薄膜(MBR)程序 86
4-1-1 無氧好氧生物薄膜程序pH及Temp之變化 86
4-1-2 無氧/好氧生物薄膜程序DO、ORP變化 87
4-1-3 無氧/好氧生物薄膜程序生物槽MLSS 89
4-1-4 無氧/好氧生物薄膜程序對有機物之去除效能 90
4-1-5 無氧/好氧生物薄膜程序對氮之去除效能 92
4-1-5-1 無氧/好氧生物薄膜程序對有機氮之去除效能 92
4-1-6 無氧/好氧生物薄膜程序處理水質評估 94
4-2 薄膜單元 97
4-2-1 薄膜之構造 97
4-2-2 薄膜基本特性測試 98
4-2-3 物理性清洗對薄膜操作壓力與通量之影響 99
4-2-3-1 曝氣產生之水流剪力預防薄膜阻塞之效能 99
4-2-3-2 間歇式抽水操作薄膜過濾預防薄膜阻塞之效能 102
4-2-3-3 間歇式抽水操作加返沖洗預防薄膜阻塞之效能 104
4-2-3-4 物理性清洗預防薄膜阻塞之綜合比較 106
4-2-4 薄膜積垢特性 108
4-2-5 物理性清洗薄膜積垢之效能 109
4-2-6 薄膜操作壓力與薄膜通量長期監測之結果 110
4-2-7 薄膜操作條件之建立 112
4-3 逆滲透(RO)程序 114
4-3-1 逆滲透程序清水試車 114
4-3-2 逆滲透程序進流水SDI值測試 118
4-3-3 逆滲透程序處理MBR出流水之效果 119
4-3-3-1 利用逆滲透系統去除導電度之效率 119
4-3-3-2 利用逆滲透系統去除TOC之效率 120
4-3-3-3 MBR+RO系統回收用途評估 121
4-4 臭氧化(O3)實驗 122
4-4-1 臭氧劑量對反應的影響 123
4-4-2 臭氧化反應時pH值的變化 124
4-4-3 添加過氧化氫對臭氧化的影響 125
4-4-3-1 過氧化氫劑量的影響 125
4-4-3-2 臭氧/雙氧水(O3/ H2O2)系統反應中pH值的變化 127
4-4-4 臭氧程序對於導電度的變化 128
4-4-5 臭氧/雙氧水(O3/ H2O2)系統最佳操作條件 130
4-5 TFT-LCD製程廢水處理與回收再利用之評估 131
第五章 結論建議 133
5-1 結論 133
5-2 建議 135
參考文獻 136
1. Anthonisen A. C., Loehr R. C., Prakasam T. B. S. and Srinath E. G. (1976). Inhibition of Nitrification by Ammonia and Nitrous Acid. J. Wat. Poll. Control Fed., 48(5), pp. 835-852.
2. Bailey P. S.(1978), Ozonation in Organic Chemistry─I. Olefinic Compounds, Chap. 2, Academic Press
3. Baker H. and Hoigne J. (1981), “Determination of Ozone in water by the Indigo Method”, Waer Res., Vol. 15, pp. 449-456
4. Barnard J. L. (1973). Biological Denitrification. J. Wat. Pol. Con. Fed., 72, pp.705.
5. Beltrán F. J., Encinar J.M. and Gracia-Argya J.F.(1990) “Ozonation of o-cresol in Agueous Solution”, Wat. Res., Vol. 24, No.11, pp. 1309-1316
6. Beltrán F. J., Ovejero G. and Acedo B. (1993) Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide. Wat. Res. 27(6), 1013-1021
7. Beltrán F. J., Gonzales M. and Gonzales J. F. (1997) Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide. Was. Res. 31(10), 2405-2414
8. Beltrán, F. J.; Encinar, J. M.; Alonso, M. A(1998a). Nitroaromatic hydrocarbon ozonation in water. 1. Single ozonation. Ind. Eng. Chem. Res., 37, 25-31
9. Beltrán, F. J.; Encinar, J. M.; Alonso, M. A(1998b). Nitroaromatic hydrocarbon ozonation in water. 2. Combined ozonation with hydrogen peroxide or UV radiation. Ind. Eng. Chem. Res., 37, 32-40
10. Benefield L. B. and Randall C. W. (1980). Biological Process Design for Wastewater Treatment. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.
11. Berthold G. and K. Krauth. (1999). Replacement of Secondary Clarification by Membrane Separation-Results with Tubular , Plate and Hollow Fibre Modules” , Wat. Sci. Tech. 40(4-5), pp. 311-320.
12. Best A. G., G. J. hatton, A. J. Rachwal, and B. Hurley. (1984). Biological Phosphorus and Nitrogen Removal at an Experimental Full Scale Plant in the U.K. Proceedings, IAWPRC Post-Conference seminar, Enhanced Biological Phosphorus Removal from Wastewater., Vol. 1, Anjou-Recherche, 75389 Paris Cedex 08, France, pp. 270-289.
13. Bouhabila E., H. R. Ben, H. Buisson. (2001). Fouling Characterization in Membrane Bioreactor. B. P. pp.76- 78.
14. Brenner A. and Argaman Y. (1990a). Effect of Feed Composition, Aerobic Volume Fraction and Recycle Rate on Nitrogen Removal in the Single-Sludge System. Wat. Res., 24(8), pp. 1041-1049.
15. Brenner A. and Argaman Y. (1990b). Control of Sludge Settling Characteristics in the Single-Sludge System, a Hypothesis. Wat. Res., 24(8), pp. 1051-1054.
16. Buhler K. H.; Staehelin J., Hoigne J. (1984) “Ozone Decompositon in Water Studied by Pulse Radiolysis” J. Phys. Chem. 88, pp.2560-
17. Cecen F. and Gonenc I. E. (1992). Nitrification-Denitrification of High-Strength Nitrogen Wastes in Two Up-Flow Submerged Filters. Wat. Sci. Tech., 26(9-11), pp. 2225-2228.
18. Cicek N., Franco J. P., Suidan M. T., Urbain V. and Manem , J. (1999a). Characterization and Comparison of a Membrane Bioreactor and a Conventional Activated-Sludge System in Treatment of Wastewater Containing High-Molecular-Weight Compounds. Wat. Environ. Res. 71, pp. 64-70.
19. Dawson R. N. and K. L. Murphy. (1973). Factors Affecting Biological Denitrification in Wastewater. Advance in Waste Pollution Research, Vol. 11, Pergamon Press, Oxford.
20. Eisenhauer H. R., “Dephenolization by Ozonolysis : Wat. Res., Vol. 5, pp. 467-472, 1971.
21. Fdz-Polanco F., Villaverde S. and Garcia P. A. (1996). Nitrite Acculuation in Submerged Biofilters Combined Effects. Wat. Sci.Tech. 34(3-4), pp. 371-378.
22. Focht D.L., and Chang A.C. (1975). Nitrification and Denitrification Process Related to Wastewater Treatment. Adv. Appl. Microbiol., 20, pp. 153.
23. Glaze, W. H.; Hang, J. W.; Chapin, D. H(1995). Advanced oxidation process. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in the water by the combination of hydrogen peroxide and UV radiation, Ind. Eng. Chem. Res.34, 2314-2323
24. Gould J. P., and Weber W. J., (1976) “Oxidation of Phenols by Ozone”, J. Wat. Pollut. Control Fed., Vol. 48, No. 1, pp.47-60.
25. Graun F., R. J. Bull, R. M. Clark, J. Doull, W. Grabow, G. M. Marsh, D. A. Okum, S. Regli, M. D. Sobsey and J. M. Symons. (1994). Chemical and Microbial Risk of Drinking Water Disinfections, Part1. Benefits and Potential Risk. J. Water SRT-Aqua, 43(4), pp. 192-199.
26. Hanaki K., Wantawin C. and Ohgaki S. (1990a). Nitrification at Low Levels of Dissolved Oxygen With and Without Organic Loading in a Suspended-Growth Reactor. Wat. Res., 24(3), pp. 297-302.
27. Hanaki K., Wantawin C. and Ohgaki S. (1990b). Effects of the Activity of Heterotrophs on Nitrification in a Suspended-Growth Reactor. Wat. Res., 24(3), pp. 289-296.
28. Hockenbury M. R. and C. P. L. Grady, Jr. (1977). Inhibition of Nitrification Effect of Selected Organic Compounds. J. Wat. Poll. Control Fed., 49(5), pp. 768-777.
29. Hoigne J. and Baker H., (1983). “Rate Constants of Reaction of Ozone with Organic and Inorganic Compounds in Water-I. Nondissociating Organic Compounds”, Wat. Res., Vol. 17, No. 2, pp. 173-183,
30. Ip S.Y., J. S. Bridges and N. F. Mills. (1987) Effect of Alternating Aerobic and Anaerobic Conditions on the Economics of the Activated Sludge Systems. Wat. Sci. and Tech., 19, pp.911-918.
31. Izumi K., Madokoro T. and Yamada Y. (1995). The Practical Use of Membrane Process for Domestic Wastewater Treatment. Shigen Kankyo Taisaku, 31(11), pp. 923-930.
32. J.L.Sotelo,E.J.Beltran,”Ozone Decomposition in Water:Kinetic Study”,Ind. Eng. Chem. Res.,1987
33. Junxin L., Baozhen W., Weiguang L., Chengji J., Xiangdong C. and Lin W. (1996). Removal of Nitrogen From Coal Gasification and Coke Plant Wastewaters in A/O Submerged Biofilm-Activated Sludge(SBF-AS) Hybrid System. Wat. Sci. Tech., 34(10), pp. 17-24.
34. Khan S. R., Ching and Bozzelli J. W., “Oxidation of 2-Chlorophenol Using Ozone Ultraviolet Radiation”, Environmental Progress, Vol. 4, No. 4, pp. 229-238, 1985.
35. Ludzack F. L. and M. B. Ettinger. (1962). Controlling Operation to Minimize Activated Sludge Effluent Nitrogen. J. Wat. Pol. Con. Fed., 34, pp. 920.
36. Mallevialle J., “Determination Experimentale des Coefficients de Transfert de l’Ozone dans l’Eau.”, Cebedeau, Vol. 28, No. 377, pp. 175 , 1975.
37. Manley T.C. and Niegowski S.J., “Ozone” in A. Standen, ed., Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 2nd ed., Interscience publishers, a division of John Wiley & Sons, Inc., New York, pp. 410-432,1967.
38. McClintock S., J. S. Sherrard, J. T. Novak and C. W. Randall. (1988). Nitrate versus Oxygen Respiration in the Activated Sludge Process. J. Wat. Pol. Con. Fed., 60(3), pp. 342-350.
39. Membrane Products Dept. b. Polyethylene Microporous Hollow Fiber Membrane. Mitsubishi Rayon Co., LTD.
40. Metcalf & Eddy Inc. (1991). Wastewater Engineering: Treatment, Disposal, Reuse, 3rd Ed., McGraw-Hill, Inc., New York.
41. Monteith H. D. et al., (1980). Industrial Waste Carbon Source for Biological Denitrification. Prog. Water Technol., 12, pp.127.
42. Nagaoka H., Kono S., Yamanishi S. and Miya A. (1999). Influence of Organic Loading Rate on Membrane Fouling in Membrane Separation Activated Sludge Process. International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, November 1-4, pp. 242-249
43. Nazim C., Hans W., Makram T. S., Brian E. W., Vincent U. and Jacques M. (1998). Effectiveness of the Membrane Bioreactor in the Biodegradation of High Molecular Weight Compounds. Wat. Res. 32(5), pp. 1553-1563.
44. Ogoshi M. and Suzuki Y. (1999). Application of Membrane Separation to an Easily Installed Municipal Wastewater Treatment Plant. International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, November 1-4, pp. 250-255.
45. Painter H. A. (1970) A Review of Literature on Inorganic Nitrogen Metabolism in Microorganisms. Wat. Res., 4, pp.393.
46. Pierre C., Herve B. and Charles P. (1997). Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater. Desalination, pp. 113,189-196.
47. Plaza E., Bosander J. and Trela J. (1991). Factors Affecting Biological Nitrogen Removal Efficiency in a Large Wastewater Treatment Plant. Wat. Sci. Tech., 24(7), pp. 121-131.
48. Rice R. G, Robson C. M., Miller G. W. and Hill A. G., “Use Ozone in Drinking Water”, J. Am.Wat. Wks. Ass., Vol. 73, No. 1, pp. 44-57, 1981.
49. Roth J.A.and Sullivan D.E. (1981),”Solubility of Ozone in Water”,Ind.Eng. Chem. Fundam., Vol. 20, pp. 137-140
50. Rosenberger S., Schreiner A., Wiesmann U. and Kraume M. (2001). Impact of Different Sludge Ages on The Performance of Membrane Bioreactors. IWA 2nd World Water Congress, Berlin, Germany, Oct.
51. Scheible O. K. (1993). Process Design Manual for Nitrogen Control. US. EPA, EPA/625/R-93/010, Washington, DC.
52. Seo G.T., Lee T., Moon B. H., Lim J. H., Lee K. S. and Ohgaki S. (1999). Two Stage Intermittent Aeration Membrane Bioreactor for Simultaneous Nitrogen and Phosphorus Removal. International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, November 1-4, pp. 234-241.
53. Sotelo J. L., Beltran E. J., Benitez F. J. and Beltran-Heredia J. (1989) “Henry’s Law Constant for the Ozone-Water System”, Wat. Res., Vo23, No.10, pp.1293-1246
54. Sourirajan S. and Agrawal J.P (1969) “Reverse Osmosis”, Ind. and Eng. Chem., Vol.61, No.11, p.62~89,
55. Tatsuki U. and KENJI H. (1999). Domestic Wastewaater Treatment by a Submerged Membrane Bioreactor with Gravitational Filtration. National Research Institute of Agricultural Engineering, Tsukuba, Ibaraki 305-8609, Japan.
56. Thompson D., Mourato D., Penny, J. (1998). Demonstration of the ZenoGem Process for Municipal Wastewater Treatment. WEF Annual Conference, Chicago.
57. Tom S., S. Judd, B. Jefferson and K. Brindle. (2000). Membrane Bioreactors for Wastewater Treatment. IWA, London.
58. Tomiyasu H., Fukutomi H. and Gordon G., (1985) “Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution”, Inorg. Chem., vol. 24 pp. -2965-2966
59. Villaverde S., Garcia-Encina P. A. and Fdz-Polanco F. (1997). Influence of pH Overnitrifying Biofilm Activity in Submerged Biofilters. Wat. Res., 31(5), pp. 1180-1186.
60. Wheatland A. B., M. J. Barnett and A. M. Bruce. (1959). Some Observations on Denitrification in River and Estuaries. Inst. Sewage Purif. J. Proc., pp.149.
61. Wuhrman K. (1968). Research Developments in Regard to Concept and Base Values of the Activated Sludge System in Advances in Water Quality Improvement. Ed. Gloyna, E. F. and Eckenfelder, W. W. Jr., University of Texas Press, pp. 143.
62. Wen C., Huang X., Qian Yi. (1999). Domestic Wastewater Treatment Using an Anaerobic Bioreactor Coupled with Membrane Filtration. Process Biochemistry, 35, pp. 335-340.
63. Xing C. H., Y. Qian, Wen X. H., Wu W. Z. and Sun D. (2001). Physical and Biological Characteristics of a Tangential-Flow MBR for Municipal Wastewater Treatment. Journal of Membrane Science, 191, pp. 31—42.
64. Yamamoto K. (1994). Membrane Filtration in Rapid Filtration, Biological Filtration and Membrane Filtration. Gihodo Shuppan, Tokyo. pp. 255.
65. Yamamoto K., Hiasa M., Mahmood T. and Matsuo T., (1989). Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Wat. Sci. Tech., 21, pp. 43-54.
66. Zhang B., Yamamoto K., Ohgaki S. and Kamiko N. (1997). Floc Size Distribution and Bacterial Activities in Membrane Separation Activated Sludge Processes for Small-Scale Wastewater Treatment Reclamation. Wat. Sci. Technol., 35(6), pp. 37-44.
67. 陳鴻烈、鄭慧玲 (1995),滲出水高濃度總氮硝化與脫硝之研究,農林學報,44(3),pp. 91-104。
68. 產業情勢 (2000),液晶顯示器(LCD)業產業經濟,226,pp. 27-33。
69. 黃志彬 (2002),高科技工業廢水處理操作效能提昇研析,第一屆高科技工業環保技術及安全衛生學術及實務研討會論文集,pp. 23-35。
70. 陳鴻烈(1994),廢水中高濃度氨氮之硝化作用,工業污染防治,第51期,pp. 41-49。
71. 吳漢松、阮國棟 (1988),廢水生物硝化脫氮法之發展趨勢,工業污染防治,第25期,pp. 143-153。
72. 倪振鴻,「以萃取-臭氧化系統處理水溶液中2,4-二氯酚反應行為之研究」,國立交通大學環境工程研究所碩士論文 ,1996
73. 經濟部水利司,(1995),建築物再生水系統設計規範及水質標準之研究。
74. 林明華、張維新和楊千,「TFT-LCD產業概況」,產業論壇,2001年3月1號。
75. Gurol M.D. and Nekouinaini S. (1984) “Kinetic Behavior of Ozone in Agueous Solution of Substituted Phenols” Indus. Eng. Chem. Fund., Vol.23, No.1, pp.54-60
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top