|
[1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052. [2] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439. [3] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989. [4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233. [5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235. [6] C. H. Chang and T. H. Chang, Generalized 2-KKM theorem and its applications in hyperconvex metric spaces and its applications , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006) [7] X. P. Ding, Y. C. Liou, and J. C. Yao, Generalized R-KKM type theorems in topological spaces with applications, Appl. Math. Letters. 18(2005), 1345-1350. [8] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Anal.66(2007),170-178. [9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310. [10] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537. [11] H. C. Huang and T. H. Chang, Generalized KKM theorem and its applications on hyperconvex metric spaces , Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006) [12] J. C. Jeng, H. C. Hsu, and Y. Y. Huang, Fixed point theorem for multifuntions having KKM property on almost convex sets, J. Math. Anal. Appl. 319(2006), 187-198. [13] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137. [14] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 204(1996),298-306. [15] W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39(2000), 611-627. [16] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003). [17] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122. [18] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608. [19] L. J. Lin and T. H. Chang, S-KKM theorems, saddle points and minimax inequalities, Nonlinear Anal. 34(1998), 73-86. [20] J. T. Markin, Best approximation and fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 63(2005) ,1841-1846. [21] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37(1999), 467-472. [22] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195. [23] K. K. Tan, G-KKM theorem, minimax inequalities and saddle points, Nonlinear Anal. 30(1997), 4151-4160. [24] E. Tarafdar and G. X. Z. Yuan, Some Applications of the Knaster-Kuratowski and Mazurkiewicz Principle in Hyperconvex Metric Spaces, Math. and Comput. Modelling. 32(2000),1311-1320. [25] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389. [26] C. F. Tsou and T. H. Chang, Generalized variational inequality theorems and minimax inequality theorems on hyperconvex metric spaces, Graduate Institute of Applied Mathematics , NHCUE , Hsinchu , Taiwan .(2006) [27] N. T. Vinh, Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta. Math. Vietnamica. 30(2005), 211-224. [28] G. X. Z. Yuan, The Charactreization of Generalized Metric KKM Mappings with Open Values in Hyperconvex Metric Spaces and Some Applications, J. Math. Anal. Appl. 235(1999), 315-325.
|