跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉錚達
研究生(外文):Cheng-Dar Liu
論文名稱:聚苯胺與聚噻吩衍生物/奈米碳材複合材料之合成與電學性質研究
論文名稱(外文):Synthesis and electrical properties of Polyaniline and Polythiophene derivatives/Nano-carbon composites
指導教授:謝國煌謝國煌引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:117
中文關鍵詞:聚苯胺聚噻奈米碳管光阻劑電磁波屏蔽
外文關鍵詞:polyanilinepolythiophenephotoresistmulti-wall carbon nanotubeelectromagnetic interference (EMI) shielding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成聚苯胺與聚噻吩衍生物製備導電性奈米碳管複合材料探討其導電性、電磁波屏蔽與其他光電性質。第一部分我們以乳化聚合法合成奈米級聚苯胺粒子,並採用本實驗室自行開發之absorption-transferring process,使之分散於環氧樹脂中。Absorption-transferring process 是以苯胺聚合雙酚A系列之環氧樹脂(DGEBA)為母體,利用其加熱後之黏滯性在水相媒介中吸附懸浮之奈米顆粒。其優點可避免奈米粒子聚集且不需任何有機溶劑。由掃描式電子顯微鏡分析聚苯胺/環氧樹脂材料,可明顯觀察出奈米級聚苯胺顆粒均勻分散在母體中,觀察不到大規模聚集的現象。利用阻抗分析儀量測其介電行為並呈現負介電常數現象,可推斷該材料呈現出巨觀的電荷未定域化現象。使用電磁波屏蔽測試,均勻分散的聚苯胺/環氧樹脂材料在100~1000MHz的電場頻率範圍最高可達到30~60dB的屏蔽效果。在導電薄膜部份,我們合成含壓克力與氫氧官能基之環氧樹脂為光阻劑,經過曝光顯影製程不同線寬圖形,再利用光阻劑表面之氫氧基與2, 4-Toluene diisocyanate(TDI)反應後接上3-Methyl-3,4-dihydro-2H-thieno[3,4-b]dioxepin-3-yl)methanol (ProDOT-OH)單體,再將薄膜浸泡入水中,加入3-thienyl ethoxybutanesulfonate (TEBS)與三甲苯磺酸鐵進行共聚反應,製得導電薄膜。在PET基板上之軟性導電薄膜其圖形解析度(line widths/spaces)為100μm/100μm與10μm/5μm,最佳導電度為90 S/cm,可見光範圍之透明度達70%。而材料之導電性與圖形線寬、聚合時間均有所影響。最後我們亦合成低能隙高分子製備奈米碳管與碳球複合材料討論有機半導體之光電特性。Poly(3,4-dihexyloxythiophene) (PDHOT) and poly(3,4-dimethoxythiophene-co- 3,4-dihexyloxythiophene) [P(DMOT-co-DHOT)] 以紫外光-可見光譜分析儀判定其能隙約為1.34~1.38 eV之間,並以之與官能化奈米碳管混掺,得到分散均勻之奈米碳管/低能隙高分子複合材料。由掃描式電子顯微鏡觀察,當官能化奈米碳管含量高達20wt%,奈米碳管仍均勻分散在母體中觀察不到明顯大規模聚集。此外,我們將PDHOT和P(DMOT-co-DHOT)與奈米碳球(PCBM)混合製備太陽能電池元件,檢測其光電性質。

In this study, we prepared different conducting polymer and carbon nanotube composites including polyaniline nano-particle, polythiophene derivative and MWNT/PANI core-shell material to discuss their conductivity, EMI shielding efficiency and optoelectrical properties.
First section, novel polyaniline (PANI)/epoxy hybrids have been fabricated using an absorption-transferring process in which no organic solvent is involved. An epoxy prepolymer cured by aniline monomer (DGEBA-aniline) was added to a freshly prepared PANI nanoparticles (NPs) aqueous solution with vigorous agitation and heating (ca. 90 C). The PANI NPs were
absorbed on the surface of epoxy droplet and then transferred into the whole droplet. The
microstructures of the product PANI/epoxy hybrids, characterized using scanning electron
microscopy, featured well-dispersed PANI NPs (ca. 40□60 nm) within epoxy matrixes; no large
aggregates were observed. The hybrids exhibited huge negative permittivities; the electromagnetic
interference shielding efficiency in an electric field at low frequency (100-1000 MHz) was ca.
30-60 dB. The well dispersed PANI NPs not only provided a continuous conducting network but
also a higher level of charge delocalization. On other hand, we also synthesized MWNT/PANI
core-shell (MPCS) structure, it could also dispersed in DGEBA-Ani through
absorption-transferring process.
In the section of conducting patterned film, A UV-curable photoresist containing hydroxyl
groups has been prepared from a mixture of a photoinitiator, epoxy-acrylate resin, hydroxyethylmethacrylate, and tripropylene glycol diacrylate. Patterns having line widths/spaces of 100/100 μm
and 10/5 μm were fabricated on a PET (Polyethylene terephthalate) substrate using lithography
techniques. 3-Methyl-3,4-dihydro-2H-thieno[3,4-b]dioxepin-3-yl)methanol (ProDOT-OH) was
self-synthesis through urethane-linkages onto the surface of the patterned photoresist on the PET
film, which was then dipped into a solution of the other monomer, 3-thienyl ethoxybutanesulfonate
(TEBS), and initiator and in situ–polymerized to form conductive poly(ProDOT-OH-co-TEBS)
films covering the surface of the patterned resist. The optimal conductivity of the
poly(ProDOT-OH-co-TEBS) film was ca. 90 S/cm with an optical transparency of ca. 70%. The
conductivity of the film was controlled by the polymerization reaction time and the resolution of
the pattern. These conductive patterned films might be applicable to the manufacture of industrial
touch panels or chemical/biological sensors.
Finally, we prepared nanocomposites of multi-wall carbon nanotubes (MWNTs) and
low-energy-bandgap conjugated polymers incorporating 3,4-alkoxythiophene monomers.
Poly(3,4-dihexyloxythiophene) (PDHOT) and
poly(3,4-dimethoxythiophene-co-3,4-dihexyloxythiophene) [P(DMOT-co-DHOT)] have relatively
low energy bandgaps (ca. 1.38 and 1.34 eV, respectively), determined from the onsets of
absorbances in their UV–Vis spectra, because of the electron donating effects of their alkoxy
groups. MWCNTs have poor solubility in common organic solvents; after surface modification
with alkyl side chains using the Tour reaction, however, the MWCNT-HA derivatives were readilydispersed in CHCl3 and could be mixed with the low bandgap polymers. Scanning electron
microscopy images revealed that MWCNT-HA was dispersed well in each polythiophene
derivative; only a few MWCNT-HA bundles could be observed at a high MWCNT-HA content (>
20 wt%). The electrical conductivities of the MWCNT/PDHOT composites were dependent on
their MWNT contents, reaching 16 S/cm at 30 wt% MWCNT-HA. We suspect that the two
hexyloxy chains of PDHOT enhanced its solubility and allowed it to wrap around the surfaces of
the MWCNTs more readily.

摘要 …………………………………………………………………………………………...I
Abstract ………………………………………………………………………………………….III
Content …………………………………………………………………………………………VI
List of tables VII
List of figures VII
Chapter 1 Introduction 1
1-1 Conducting Polymer 1
1-2 Principle of conductivity 3
1-3 Polyaniline (PANI) 8
1-4 Polythiophene and its derivatives 14
1-5 Carbon Nanotube 22
1-6 Dielectric behavior 30
1-7 Electromagnetic Interference (EMI) shielding 34
1-8 Polymeric Solar Cell 37
Chapter 2 Absorption-Transfering Process for Well-Dispersered MWNT-Polyaniline /Epoxy hybrid and its Electrical Properties 41
2-1 Introduction 41
2-2 Experimental 43
2-3 Result and discussion 46
2-4 Conclusion 53
Chapter 3 Nanometer-Thick Patterned Conductive Films Prepared Through the Self-Synthesis of Polythiophene Derivatives 68
3-1 Introduction 68
3-2 Experimental 70
3-3 Results and discussion 73
3-4 Conclusion 78
Chapter 4 Synthesis and Characterization of Well-Dispersed Multi-Wall Carbon Nanotube/Poly(3,4-alkoxythiophene) Nanocomposites 85
4-1 Introduction 85
4-2 Experimental 87
4-3 Result and Discussion 91
4-4 Conclusion 99
Chapter 5 Summary 106
Reference ………………………………………………………………………………………...108
Introduction to author 115

List of tables
Table 1-1. The structure and dopant of each conjugated polymer 3
Table 1-2. Various types of PANI 9
Table 1-3 Polymer structures and its Eg 17
Table 1-4 Dielectric constant of various polymers 32
Table 1-5. The definition of EMI shielding level 36
Table 3-1. UV-Curable Photoresist Compositions and Properties 71
Table 3-2. Conductivities and Transparencies of Patterned Films Formed at Various Polymerization Times 77
Table 4-1. UV–Vis absorption and energy bandgap data for the PT derivatives 93
Table 4-2. Conductivities (S/cm) of pristine MWCNT/PT derivative composites 97
Table 4-3. Conductivities (S/cm) of MWCNT-HA/PT derivative composites 97

List of figures
Figure 1-1. The energy gap of insulator, semiconductor and metal 4
Figure 1-2. The energy gap of various conjugated length of polyacetylene 5
Figure 1-3. The energy gap of the conjugated polymer 6
Figure 1-4. Chemical structure of aromatic and quinoid type of Polythiophene 7
Figure 1-5. Chemical structure of PANI 9
Figure 1-6. Aniline redical and its resonance forms. 12
Figure 1-7. Formation of the radical cation dimmer. 12
Figure 1-8. The route of PANI synthesis. 13
Figure 1-9. The mechanism of acid doping. 14
Figure 1-10. UV-Vis spectra of poly(cycloalkyl[c]thiophene)s 19
Figure 1-11. Schematic illustration of the layered structure of regioregular P3HT with the definitions of the lattice parameters a, b, and c for the crystalline state (a=16.8 A ˚ , b=7.66 A ˚ , c=7.7 A ˚ ) 20
Figure 1-12. Chemical structure of PEDOT/PSS (BAYTRON P) 21
Figure 1-13. Conceptual diagram of single-walled carbon nanotube (SWNT) (A)and multi-walled carbon nanotube (MWNT) (B) 22
Figure 1-14. Schematic diagram showing how a hexagonal sheet of graphite is rolled to form a CNT 24
Figure 1-15. Atomic structures of zigzag and armchair nanotubes 24
Figure 1-16. Typical defects on the CNTs (A) 5 or 7-membered rings on the CNT framework, (B) sp3 htbridized defect (R=H and OH), (C) damages by oxidation, (D) open ends of CNT, terminated with COOH groups 27
Figure 1-17. Schematic of common functionalization routs used to 28
derivatize CNTs at end and defect sites 28
Figure 1-18. Schematic describing various Covalent sidewall chemistry of functionalized CNTs 29
Figure 1-19. Illustration of the structure of a parallel-plate capacitor 31
Figure 1-20. Voltage-current phase relationships in a capacitor 33
Figure 1-21. Equivalent circuit of loss dielectric 34
Figure 1-22. The illustration of electromagnetic waves 36
Figure 1-22. The mechanism of EMI shielding 36
Figure 1-23. Schematic diagram of the band structure of 38
heterojunction organic solar cell. 38
Figure 1-24 Diagram of the layered structure of a bulk heterojunction 39
organic solar cell 39
Figure 1-25. Graph of I-V curve for a solar cell device 40
Figure 2-1. Synthesis of DGEBA-Aniline. 55
Figure 2-2. The schematic process for absorption-transferring mechanism. 55
Figure 2-3. DSC analysis of various feed ration of DGEBA-Ani prepolymer. 56
Figure 2-4. FTIR spectrum for the hybrid prepared by the absorption-transferring process 57
Figure 2-5. Electrical conductivity vs. PANI-DBSA concentration for epoxy composites 57
Figure 2-6. SEM micrographs of the hybrid prepared by the absorption-transferring process for various PANI-DBSA content(a) DGEBA-Ani. (b) 12.8 wt.% (c) 28 wt.% (b) 38 wt.% 58
Figure 2-7. SEM micrographs of the composite prepared by the blending process for various PANI-DBSA content(a) 12 wt.% (b) 38 wt.% 58
Figure 2-8. Frequency dependence of dielectric constant(ε,) for various PANI-DBSA/Epoxy(a) by blending process (b) by absorption-transferring process 59
Figure 2-9. EMI shielding effectiveness of electric field as a function of frequency measured in 100M~1G Hz range of PANI-DBSA/Epoxy. (a) by blending process (b) by absorption-transferring process 60
Figure 2-10. EMI shielding effectiveness of magnetic field as a function of frequency measured in 100M~1G Hz range of PANI-DBSA/Epoxy. (a) by blending process (b) by absorption-transferring process 61
Figure 2-11 SEM image of 12.8wt% PANI-DBSA/DGEBA hybrid. 62
Figure 2-12. Electrical conductivity vs. PANI-DBSA concentration for DGEBA & DGEBA-Ani hybrids. 62
Figure 2-13. EMI shielding effectiveness of magnetic field as a function of frequency measured in 100M~1G Hz range of PANI-DBSA/DGEBA 63
Figure 2-14 Synthesis of MPCS-DBSA 64
Figure 2-15 SEM images of (a) sulfonated MWNT (b) s-MWNT/PANI (aniline/s-MWNT = 2:1) (c) MPCS-DBSA (aniline/s-MWNT = 2:1) 64
Figure 2-16. TEM image of (a) sulfonated MWNT (b) MPCSI (c) MPCS-DBSA (aniline/s-MWNT = 2:1) 64
Figure 2-17. TEM image of various MPCS (a) aniline/s-MWNT = 1:1 (b) aniline/s-MWNT = 2:1 (c) aniline/s-MWNT = 3:1 65
Figure 2-18. Conductivity of MPCS with various aniline/s-MWNT feed ratio. 65
Figure 2-19. SEM images of various MPCS-DBSA/epoxy hybrids (a) 2 wt% MPCS (b) 3.5 wt% MPCS (a) 7 wt% MPCS 65
Figure 2-20. Frequency dependence of dielectric constant(ε,) for MPCS-DBSA/epoxy hybrid 66
Figure 2-21. EMI shielding effectiveness of MPCS-DBSA/epoxy hybrid as a function of frequency measured in 100M~1G Hz range. (a) in electric field (b) in magnetic field 67
Figure 3-1. Microlithography process used to form patterned conductive poly(ProDOT-OH-co-TEBS) films. 79
Figure 3-2. FTIR spectra recorded at various times (0 and 30 min) during the synthesis of the ProDOT-OH-co-TDI oligomer. 79
Figure 3-3. ATR-FTIR spectra of (a) the patterned photoresist film and (b) after linking of ProDOT-co-TDI onto the patterned photoresist. 80
Figure 3-4. XPS spectra of the patterned photoresist featuring the linked ProDOT-OH-co-TDI oligomer. (a) C 1s spectra; (b) N 1s spectra; (c) S 2s spectra. 80
Figure 3-5. Thermal decomposition temperatures for UV-curable photoresists containing various HEMA/epoxy-acrylate-TPGDA ratios [■: HEA(85/15)-3; ●: HEA(50/50)-3; ▲: HEA(30/70)-3; ▼: HEA(20/80)-3; ◆: HEA(10/90)-3]. 81
Figure 3-6. Glass transition temperatures of UV-curable photoresists featuring various HEMA/epoxy-acrylate-TPGDA ratios [a: HEA(85/15)-3; b: HEA(50/50)-3; c: HEA(30/70)-3; d: HEA(20/80)-3; e: HEA(10/90)-3]. 81
Figure 3-7. Surface resistances of patterned films after various reaction times (line widths/spaces: ■, 100/100 μm; ●, 10/5 μm). 82
Figure 3-8. Conductivities of patterned films at various reaction times (line widths/spaces: ■, 100/100 μm; ●, 10/5 μm). 82
Figure 3-9. Transparencies of the patterned films at various reaction times (line widths/spaces: ■, 100/100 μm; ●, 10/5 μm). 83
Figure 3-10. OM images of patterned films having line widths/spaces of (a) 100/100 μm and (b) 10/5 μm. 83
Figure 3-11. AFM images of the conductive patterned films obtained after self-synthesis of poly(ProDOT-OH-co-TEBS) (HEMA concentration: 85%). (a, b) Topography of the film having a line width/space of 10/5 μm; (c) phase image of the conducting patterned line (2 μm

Reference
[1] B. R. Hsieh, Y. Wei, Semiconducting Polymers – Applications, Properties, and Synthesis, American Chemical Society: Washington, DC, 1999, pp 1~2.
[2] R. H. Norman, Conductive rubbers and Plastics, Elsevier, Amsterdam, 1970
[3] E. K. Sichel Ed., Carbon Black Polymer Composites, Dekker: New York, 1982
[4] F. Carmona, Physica A, 1989, 157, 461
[5] M. Armand, Adv. Mater., 1990, 2, 278
[6] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Adv. Mater., 1997, 10, 725
[7] T. Nakamura, T. Akutagawa, K. Honda, A. E. Underhill, A. T. Coomber, R. H. Friend, Nature, 1998, 394, 159
[8] T. A. Skothirm, Handbook of Conducting Polymers, M. Dekker, New York, 1986
[9] W. W. Fock, G. E. Wnek, Y. Wei, J. Phys. Chem., 1987, 91, 5813
[10] M. Kertez, J. Koller, A. Azman, J. Chem. Phys., 1977, 67, 1180
[11] W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. Lett., 1979, 42, 1698
[12] Y. S. Lee, M. Kertesz, J. Chem. Phys., 1988, 88, 2609
[13] J. Roncali, Chem. Rev., 1997, 97, 173
[14] Y. Cao, P. Smith, A.J. Heeger, Synth Met, 1992, 48, 91
[15] A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval, Prog. Polym. Sci., 2003, 28, 1701
[16] G. J. Cruz, J. Morales, M. M. Castillo-Ortega, R. Olayo, Synth. Met.,1997, 213
[17] P. Swapna Rao, S. Subrahmanya, D.N. Sathyanarayana Synth. Met. 2002, 128, 311
[18] A. A. Syed, M.K. Dinesan Talanta, 1991, 38, 8, 815
[19] A. Malinauskas, Polymer, 2001, 42, 3957
[20] S. Picart, F. Miomandre, V. Launay, Bull. de l’Union des Physiciens , 2001, 95, 581
[21] L. M. Abrantes, J. P. Correia, M. Savic, G. Jin, Electrochim. Acta, 2001, 46, 3181
[22] D. N. Debarnot, F. P. Epaillard, Analytica Chimica Acta, 2003, 475, 1
[23] A. A. Athawale, M. V. Kulkarni, V. V. Chabukswar, Mater. Chem. Phys., 2002, 73, 106
[24] K. S. Ryu, B. W. Moon, J. Joo, S. H. Chang, Polymer, 2001, 42, 9355
[25] H. S. O. Chan, S. H. NG, Prog. Polym. Sci., 1998, 23, 1167
[26] M. D. M. Sukumar, R. Safikur, K. Santanu, Bull. Electrochem., 1992, 8, 556.
[27] S. Roth, Synth. Met., 1993, 55-57, 3623.
[28] R. J. Waltman, J. Bargon, Can. J. Chem., 1986, 64, 76.
[29] A. F. Diaz, J. C. Lacroix, New J. Chem., 1988, 12, 171.
[30] G. K. Chandler, D. Pletcher, Spec. Period. Rep. Electrochem., 1985, 10, 117.
[31] G. L. Baker, Electronic and Photonic Applications of Polymers, ed. M. J. Bowden, S. R. Turnewr. ACS Advances in Chemistry series 210, American Chemical Society, Washington DC, 1988, p. 271.
[32] A. O. Patel, A. J. Heeger, F. Wudl, Chem. Rev., 1988, 88, 183.
[33] S. A. Jenekhe, Nature, 1986, 322, 345.
[34] C. B. Gorman, R. H. Grubbs, Conjugated Polymers, ed. J. L. Bredas and R. Silbey. Kluwer Academic, Dordrecht, The Netherlands, 1991.
[35] W. Wu, S. Kivelson, Synth. Met., 1989, 28, D575.
[36] D. A. Dos Santos, C. Quattrocchi, R. H. Friend, J. L. Bredas, J. Chem Phys., 1994, 100, 3301.
[37] G. R. J. Williams, J. Molec. Electron., 1990, 6, 99.
[38] J. P, Aimes, Conjugated Polymers: Novel Science and Technology, ed. J. L. Bre´das and R. Silbey. Kluwar, 1991.
[39] J. Ru¨he, A. Berlin, G. Wegner, Macromol. Chem. Phys., 1995, 196, 225.
[40] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, R. Friend, Phys. Rev. B, 2003, 67, 064203.
[41] G. Li, V. Shrotriya, Y. Yao, J. Huanga, Y. Yang, J. Mater. Chem., 2007, 17, 3126
[42] S. Hugger, R. Thomann, T. Heinzel, T. Thurn-Albrecht, Colloid Polym. Sci., 2004, 282, 932
[43] H. Sirringhaus., Nature (London), 1999, 401, 685
[44] B. R. Saunders, M. L. Turner, Adv. Coll. Interf. Sci., 2008, 138, 1
[45] J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. So¨lling, M. Giles, I. McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772
[46] Bayer AG, Eur. Patent 339 340, 1988
[47] F. Jonas, L. Schrader, Synth. Met., 1991, 41±43, 831
[48] G. Heywang, F. Jonas, Adv. Mater., 1992, 4, 116.
[49] I. Winter, C. Reece, J. Hormes, G. Heywang, F. Jonas, Chem. Phys., 1995, 194, 207.
[50] M. Dietrich, J. Heinze, G. Heywang, F. Jonas, J. Electroanal. Chem., 1994, 369, 87.
[51] Bayer AG, Eur. Patent 440 957, 1991
[52] Agfa Gevaert, Eur. Patent 564 911, 1993
[53] F. Jonas, W. Krafft, B. Muys, Macromol. Symp., 1995, 100, 169.
[54] L. B. Groenendaal, F. Jonas, D.r Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater., 2000, 12, No. 7, 481
[55] S. Iijima, Nature, 1991, 354, 56
[56] S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 1998, 198, 49
[57] E. T. Thostenson, Z. Ren, T. W. Chou, Compos. Sci. Technol., 2001, 61, 1899
[58] I. Singh, A. K. Rehni, P. Kumar, M. Kumar, H. Y. Aboul-Enein, Fuller. Nanotub. Car. N., 2009, 17, 361
[59] E,. Dervishi, Z. Li, Y. Xu, V. Saini, A. R. Biris, D. Lupu, A. S. Biris, Patricul. Sci. Technol., 2009, 27, 107
[60] M. Paradise, T. Goswami, Mater. Design, 2007, 28, 1477
[61] S. Banerjee, T. H. Benny, A. A. Wang, Adv. Mater., 2005, No. 1, 17
[62] W. F. Smith, Materials Science and Engineering, McGraw-Hill, 1986, pp 559-561
[63] J.C. Anderson, H. D. Leaver, R. D. Rawlings, J. M. Alexander, Materials Science, Chapman and Hall, 1990 , pp 518-534
[64] C. M. Srivastava, C. Srinivasan, Science and Engineering Materials, Wiley Eastern Limited, 1990, pp 327-342
[65] T. L. Benanti, D. Venkataraman, Photosynth. Res., 2006, 87, 73
[66] S. A. Jenekhe, S. Yi, Appl. Phys. Lett., 2000, 77, 2635.
[67] A. J. Breeze, A. Salomon, D. S. Ginley, B. A. Gregg, H. Tillmann, H. H. Hoerhold, Appl. Phys. Lett., 2002, 81, 3085.
[68] P. Schilinsky, C. Waldauf, C. J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
[69] F. Padinger, R. Rittberger, N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85.
[70] C. Winder, N. S. Saricifci, J. Mater. Chem., 2004, 14, 1077
[71] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324
[72] Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, Nano Lett., 2005, 5, 2131.
[73] N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P. C. Eklund, Nano Lett., 2006, 6, 1141.
[74] Zhu, J.; Kim, J. D.; Peng, H.; Margrave, J. L.; Khabashwsku, V. N.; Barrera, E. V., Nano Lett., 2003, 3, 1107.
[75] K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, M. Korobov, J. Phys. Chem. B, 2000, 104, 8911.
[76] R. A. Graff, J. P. Swanson, P. W. Barone, S. Baik, D. A. Heller, M. S. Strano, Adv. Mater., 2005, 17, 980.
[77] F. J. Owens, J. R. P. Jayakody, S. G. Greenbaum, Compos. Sci. Technol. , 2006, 66, 1280.
[78] G. Bauer, J. Hassmann, H. Walter, J. Haglmuller, C. Mayer, T. Schalkhammer, Nanotechnology, 2003, 14, 1289.
[79] J. Gao, B. Zhao, M. E. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, R. C. Haddon, J. Am. Chem. Soc., 2006, 128, 7492.
[80] C. Y. Yang, Y. Gao, P. Smith, A. J. Heeger, Synth. Met., 1993, 53, 293.
[81] Y. Gao, P. Smith, A. J. Heeger, Synth. Met., 1989, 32, 263.
[82] J. A. Conklin, S. C. Huang, S. M. Huang, T. Wen, R. B. Kaner, Macromolecules, 1995, 28, 6522.
[83] S. A. Chen, G. W. Hwang, Macromolecules, 1995, 29, 3950.
[84] F. Lux, Polymer, 1994, 35, 2915.
[85] M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, Synth. Met., 2002, 126, 53.
[86] X. G. Li, M. R. Huang, J. F. Zeng, M. F. Zhu, Colloids Surf., 2004, 248, 111.
[87] D. Han, Y. Chu, L. Yang, Y. Liu, Z. Lv, Colloids Surf., 2005, 259, 179.
[88] Y. Wei, C. Yang, G. Wei, G. Feng, Synth. Met., 1997, 84, 289.
[89] W. J. Zhang, J. Feng, A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1997, 84, 119.
[90] X. Yang, T. Zhao, Y. Yu, Y. Wei, Synth. Met., 2004, 142, 57.
[91] M. Tiitu, A. Talo, O. Forsen, O. Ikkala, Polymer, 2005, 46, 6855.
[92] J. Jang, J. Bae, K. Lee, Polymer, 2005, 46, 3677.
[93] J. E. Osterholm, Y. Cao, F. Klavetter, P. Smith, Synth. Met., 1993, 55–57, 1034.
[94] Haba, Y., Segal, E., Narkis, M.; Titelman, G. I.; Siegmann, A., Synth. Met., 2000, 110, 189.
[95] V. N. Prigodin, A. J. Epstein, Synth. Met., 2002, 125, 43.
[96] J. Joo, E. J. Oh, G. Min, A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1995, 69, 251.
[97] Y. Z. Wang, J. Joo, C. H. Hsu, A. J. Epstein, Synth. Met., 1995, 69, 167.
[98] H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers; Johe Wiley & Sons Ltd, 1997, Vol. 3, pp. 376-384.
[99] C. C. Ku, R. Liepins, Electrical Properties of Polymers, Hanser Publishers, Munich, Vienna, New York, 1987, pp. 25–92.
[100] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Sontos, J. L. Bredas, M. Loglund, W. R. Salaneck , Nature, 1999, 39, 121
[101] Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, W. Yang, Y. Cao, Macromol. Chem. Phys., 2006, 207, 511
[102] A. Kros, R. Nolte, N. Sommerdijk, J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 738.
[103] J. Ohshita, Y. Tada, A. Kunai, Y. Harima, Y. Kunugi, Synth. Met., 2009, 159, 214
[104] F. Zhang, T. Nyberg, O. Inganas, Nano Lett., 2002, 12, 1373.
[105] Y. Li, Y. Wu, B. S. Ong, J. Am. Chem. Soc., 2005, 127, 3266.
[106] Y. Li, Y. Wu, B. S. Ong, J. Am. Chem. Soc., 2007, 129, 1862.
[107] T. Sangoi, C. G. Smith, M. D. Seymour, J. N. Venkataraman, D. M. Clark, M. L. Kleper, B. E. Kahn, J. Dispers. Sci. Technol., 2004, 25, 513
[108] F. D. L. Vega, A. Garbar, C. Rottman, E. Masoud, B. Faulkner, SID Symp. Dig. Tech. Pap., 2006, 37, 1987.
[109] J. Perelaer, C. E. Hendriks, A. W. M. de Laat, U. S. Schubert, Nanotechnology, 2009, 20, 165303.
[110] S. Chun, D. Grudinin, D. Lee, S. H. Kim, G. R. Yi, I. Hwang, Chem. Mater., 2009, 21, 343.
[111] J. H. Choi, S. W. Lee, K. D. Kin, D. G. Choi, J. H. Jeong, E. S. Lee, Curr. Appl. Phys., 2009, 9, 138.
[112] D. Jang, D. Kim, B. Lee, S. Kim, M. Kang, D. Min, J. Moon, Adv. Funct. Mater., 2008, 18, 2862.
[113] J. Heberko, J. Raczkowska, A. Bernasik, W. Luzny, J. Rysz, A. Budkowski, Macromol. Symp, 2008, 263, 47.
[114] T. Mustonen, K. Kordas, S. Saukko, G. Toth, J. S. Pettila, P. Helisto, H. Seppa, H. Jantunen, Phys. Stat. Sol. (b), 2007, 44, 4336.
[115] S. P. Mishra, R. Sahoo, A. V. Ambade, A. Q. Contractor, J. Mater. Chem., 2004, 14, 1896.
[116] F. Tran-Van, M. Carrier, C. Chevrot, Synth. Met., 2004, 142, 251.
[117] D. K. Chattopadhyay, S. S. Panda, K. V. S. N. Raju, Prog. Org. Coat., 2005, 54, 10.
[118] T. K. Kim, J. E. Kim, K.S. Suh, Polym Int., 2006, 55, 80.
[119] M. S. Jung, T. L. Choi, W. J. Joo, J. Y. Kim, I. T. Han, J. M. Kim, Synth. Met., 2007, 157, 997.
[120] A. Kros, R. J. M. Nolte, N. Sommerdijk, J. Polym. Sci. Pol. Chem., 2002, 40, 738.
[121] J. S. Park, T. I. Ryu, M. Song, K. J. Yoon, M. J. Lee, I. A. Shin, G. D. Lee, J. W. Lee, Y. S. Gal, S. H. Jin, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 6175.
[122] R. Koeppe, O. Bossart, G. Calzaferri, N. S. Sariciftci, Sol. Energy Mater. Sol. Cells, 2007, 91, 986.
[123] M. Gross, D. C. Muller, H. G. Nothofer, U. Scherf, D. Neher, C. Brauchle, K. Merrholz, Nature, 2000, 405, 661.
[124] K. Book, H. Bässler, A. Elschner, S. Kirchmeyer, Org. Electron., 2003, 4, 227.
[125] M. Pomerantz, Handbook of Conducting Polymers, 2nd ed.; Marcel Dekker: New York, 1998; p 277.
[126] A. Kumar, J. G. Bokria, Z. Buyukmumcu, T. Dey, G. A. Sotzing, Macromolecules, 2008, 41, 7098.
[127] W. C. Chen, S. A. Jenekhe, Macromolecules, 1995, 28, 465.
[128] J. L. Bredas, Mol. Cryst. Liq. Cryst., 1985, 118, 49.
[129] J. L. Bredas, A. J. Heeger, F. Wudl, J. Chem. Phys., 1986, 85, 4673.
[130] I. Hoogmartens, P. Adriaensens, D. Vanderzande, J. Gelan, C. Quattrocchi, R. Lazzaroni, L. J. Bredas, Macromolecules, 1992, 25, 7347.
[131] W. C. Chen, S. A. Jenekhe, Macromolecules, 1995, 28, 454.
[132] A. Kumar, Z. Buyukmumcu, G. A. Sotzing, Macromolecules, 2006, 39, 2723.
[133] S. Iijima, Nature, 1991, 354, 56.
[134] V. Skakalova, U. Dettlaff-Weglikowska, S. Roth, Synth. Met., 2005, 152, 349.
[135] L. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 2000, 287, 622.
[136] E. S. Forzani, X. Li, P. Zhang, N. Tao, R. Zhang, I. Amlani, R. Tsui, L. A. Nagahara, Small, 2006, 2, 1283.
[137] J. Oh, M. E. Kozlov, B. G. Kim, H. K. Kim, R. H. Baughman, Y. H. Hwang, Synth. Met., 2008, 158, 638.
[138] C. C. Ma, Y. L. Huang, Y. S. Chiu, J. Polym. Sci. Part B: Polym. Phys., 2005, 43, 345.
[139] H. L. Wu, C. C. Ma, Y. T. Yang, H. C. Kuan, C. C. Yang, C. L. Chiang, J. Polym. Sci. Part B: Polym. Phys., 2006, 44, 1096.
[140] L. M. Clayton, A. K. Sikder, A. K. Kumar, M. Cinke, M. Meyyappan, T. G. Gerasimov, J. P. Harmom, Adv. Funct. Mater., 2005, 15, 101.
[141] W. Wang, K. A. S. Fernando, Y. Lin, M. J. Meziani, L. M. Veca, L. Cao, P. Zhang, M. M. Kimani, Y. P. Sun, J. Am. Chem. Soc., 2008, 130, 1415.
[142] E. Kymakis, G. A. J. Amaratunga, Appl. Phys. Lett., 2002, 80, 112.
[143] B. J. Landi, R. P. Raffaelle, S. L. Castro, S. G. Bailey, Prog. Photovolt. Res. Appl., 2005, 13, 165.
[144] J. Geng, B. S. Kong, S. B. Yang, S. C. Youn, S. Park, T. Joo, H. T. Jung, Adv. Funct. Mater., 2008, 18, 2659.
[145] Q. Liu, J. Mao, Z. Liu, N. Zhang, Y. Wang, L. Yang, S. Yin, Y. Chen, Nanotechnology, 2008, 19, 115601.
[146] E. Palacios-Lidon, B. Perez-Garcia, J. Abellan, C. Miguel, A. Urbina, J. Colchero, Adv. Funct. Mater., 2006, 16, 1975.
[147] J. M. Warman, M. P. de Haas, T. D. Anthopoulos, D. M. De Leeuw, Adv. Mater., 2006, 18, 2294.
[148] Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, D. L. Carroll, Chem. Mater., 2001, 13, 2864.
[149] F. Cheng, A. Adronov, Chem. Mater., 2006, 18, 5389.
[150] J. L. Bahr, J. M. Tour, Chem. Mater., 2001, 13, 3823.
[151] B. K. Price, J. M. Tour, J. Am. Chem. Soc., 2006, 128, 12899.
[152] J. Chattopadhyay, A. K. Sadana, F. Liang, J. M. Beach, Y. Xiao, R. H. Hauge, W. E. Billups, Org. Lett., 2005, 7, 4067.
[153] C. A. Dyke, J. M. Tour, J. Am. Chem. Soc., 2003, 125, 1156.
[154] B. M. W. Langevwld-Voss, R. A. J. Janssen, E. W. Meijer, J. Mol. Struct., 2000, 521, 285.
[155] S. P. Mishra, R. Sahoo, J. Mater. Chem., 2004, 14, 1896.
[156] V. N. Gogte, L. G. Shah, B. D. Tilak, K. N. Gadekar, M. B. Sahasrabudhe, Tetrahedron, 1967, 23, 2437.
[157] M. A. Keegstra, T. H. A. Peters, L. Brandsma, Tetrahedron, 1992, 48, 3633.
[158] F. Goldoni, B. M. W. Langeveld-Voss, E. W. Meijer, Synth. Commun., 1998, 28, 2237.
[159] C. Shi, Y. Yao, Y. Yang, Q. Pei, J. Am. Chem. Soc., 2006, 128, 8980.
[160] J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, J. Am. Chem. Soc., 2001, 123, 6536.
[161] C. D. Liu, S. N. Lee, C. H. Ho, J. L. Han, K. H. Hsieh, J. Chem. Phys. C, 2008, 112, 15956.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top