跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳律言
研究生(外文):Lu-Yen Chen
論文名稱:相對濕度對氣膠微粒散光係數之影響
論文名稱(外文):Influence of relative humidity on particles' scattering coefficient
指導教授:鄭福田鄭福田引用關係陳志傑陳志傑引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:168
中文關鍵詞:氣膠微粒散光係數濕度積分散光儀吸濕
外文關鍵詞:aerosolscattering coefficienthumiditynephelometerhygroscopy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:666
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:1
微粒粒徑分布及散光係數深受相對濕度影響。而目前廣受應用之積分散光儀(integrating nephelometer),在將其應用於高濕度環境之測定過程中,為避免水分附著於受測腔內壁,均將受測氣流加熱。此操作方式將使微粒失去水分,造成微粒粒徑分布向小粒徑方向偏移,並進而低估散光係數測值。由於我國台灣地區經常出現高相對濕度之情形,在受測大氣微粒樣品之相對濕度受積分散光儀加熱而減少的過程中,微粒所含水份亦隨之減少而使其粒徑變小,進而影響其散光係數之測值結果。有鑑於此,探討大氣微粒於積分散光儀內相對濕度變化過程所生之散光係數測值影響,為提供大氣微粒真實散光係數之重要研究課題。
本研究為釐清相對濕度對氣膠微粒散光係數之影響,分別就:大氣微粒在不同相對濕度下之吸濕成長性質、建置氣膠散光係數計算模式、以及求解積分散光儀中發生之散光係數變化等三大面向加以探討。其中大氣微粒吸濕成長性質測定係利用串聯式微分型移動度分析系統(Tandem Differential Mobility Analyzer, TDMA)配合不致稀釋大氣微粒樣品之微粒濕控系統加以測定。氣膠散光係數計算模式,則納入微粒之粒徑分布及足以反映微粒成分變化之成長熱力學函數予以建置,並配合自行製備微粒之測定結果予以檢討。在定量檢討積分散光儀中發生之散光係數變化上,則應用計算流體力學求解積分散光儀內受加熱影響所導致之流場及溫度變化,並據以計算各種不同粒徑、組成成分分布之微粒,在積分散光儀中發生之散光係數變化。
本研究成果顯示:大氣微粒中原落於狹窄粒徑範圍的部分,在吸濕成長後呈雙峰型態粒徑分布,顯現其組成成分之外部混合性質。在本研究探討之粒徑介於53至200 nm之大氣微粒,其粒徑成長較大之微粒個數比例及成長因子均隨起始粒徑增加而增加。硫酸銨與硝酸銨純物質微粒散光係數隨濕度變化之情形,均與本研究所建置之散光係數計算模式獲致結果相符。積分散光儀樣品氣流之相對濕度變化主要發生於加熱區,此區與樣品微粒受光照射之有效體積大抵重疊,因此積分散光儀內部之加熱機制,即使樣品氣流中微粒發生可觀之粒徑分布變化,進而影響其散光係數測值。當入流氣流相對濕度較高,使其在積分散光儀中受熱後仍未越過氣流中所含微粒結晶點時,微粒散光係數低估程度係隨入流氣流相對濕度減少而緩和減少。在入流氣流相對濕度為90%時,不同成分微粒散光係數低估程度落於41%至72%之間。當入流氣流相對濕度較低,使其在積分散光儀中受熱後越過氣流中所含微粒結晶點時,微粒散光係數低估程度即因微粒粒徑突減而更形顯著,此低估程度亦隨相對濕度減少而減少。
Size distribution and scattering coefficients of particles are significantly influenced by relative humidity (RH). The scattering coefficient change caused by particles’ size change is especially important for environments with high relative humidity. In order to quantify the effects of RH change on scattering coefficients of particles, the hygroscopic growth of particles and size change occurring in scattering measurement instrument, integrating nephelometer, are investigated in this study.
Hygroscopic growth of particles of different sizes and the resultant size distribution changes were observed as a function of the relative humidity (RH). A particle generation device, relative humidity module, and a Tandem Differential Mobility Analyzer system were set up to measure the particle size distributions under different RH conditions. Adopting Nafion as an RH adjusting module, the aerosol hygroscopic observations were successfully performed without the interference caused by blending sample stream with humidified air. The measured deliquescence humidity of model compounds, NaCl and (NH4)2SO4, agree with the theoretical values reported by other investigators. The particle growth factor is enhanced around the RH of 70%. In addition, particle size distribution behaves as two split groups of particles with the RH greater than 76%. The average growth factors of hygroscopic ambient particles in Taiwan are similar to those reported elsewhere. There are several hygroscopic salt compositions in ambient aerosols, (NH4)2SO4 is the most abundant one. Observed particle deliquescence behaviors showed limited alternation of organics on particle growth at higher RH.
Nephelometer is widely used to measure the scattering coefficient of ambient particles. The sample stream is heated in nephelometer to avoid the possible formation of water film on the inner wall of nephelometer. The relative humidity change of heated sample stream also alters particles’ size distribution. In order to clarify the meaning of scattering coefficient measured by nephelometer, it is necessary to quantify the difference of measured and true scattering coefficient of ambient particles. In this study, the flow field, temperature field, and relative humidity field of nephelometer’s test chamber are solved by computational fluid dynamics. The corresponding scattering coefficient changes are calculated for three different types of particles including typical urban particles, rural particles, and marine particles. For sample stream with 90% relative humidity, the measured particle scattering coefficient is 63.5%, 41.7%, and 72.5% lower than the ambient particle scattering coefficient for typical urban particles, rural particles, and marine particles, respectively. For typical urban particles and rural particles, the differences between measured and ambient particle scattering coefficients are larger in environments with higher relative humidity. The differences range from 23.8% to 63.5% for typical urban particles, from 8.4% to 41.7% for rural particles. For marine particles, this difference is about 70%, and not sensitive to relative humidity.
第一章 引言 1
1.1 研究背景 1
1.2 研究目標 2
第二章 文獻回顧 3
2.1 微粒散光係數影響機制 3
2.11 微粒散光之微觀物理模式 4
2.1.2 微粒散光現象巨觀解析 8
2.2 相對濕度對微粒粒徑分布之影響 9
2.2.1 微粒粒徑隨濕度變化測定方法 9
2.2.2 大氣微粒粒徑隨濕度變化現象 12
2.3 氣膠微粒散光係數測定方法探討 14
2.4 微粒散光係數計算模式 18
2.4.1 機制型模式 18
2.4.2 迴歸型模式 25
第三章 研究方法與實驗設備 31
3.1 濕度對微粒吸濕成長因子影響 33
3.1.1 研究流程 33
3.1.2 實驗設備 36
3.1.3 測定方法 44
3.1.4 測定結果計算 48
3.2 相對濕度對微粒群散光係數影響 50
3.2.1 研究流程 52
3.2.2 實驗設備 52
3.2.3 測試方法 61
3.2.4 測定結果應用於模式評估 62
3.2.5 大氣微粒散光係數計算模式建立及檢討 66
3.3 不同濕度下積分散光儀測值意義解析 74
3.3.1 研究流程 76
3.3.2 模式工具 76
第四章 結果與討論 83
4.1 濕度對微粒吸濕成長因子之影響 83
4.1.1 自行製備微粒測試 83
4.1.2 大氣微粒吸濕成長因子測定結果 88
4.2 相對濕度對微粒群散光係數影響 107
4.2.1 濕度對微粒粒徑分布之影響 107
4.2.2 濕度對微粒散光係數之影響 119
4.2.3 散光係數計算模式應用於大氣微粒 124
4.3 不同濕度下積分散光儀測值意義解析 129
4.3.1 積分散光儀邊界條件界定 129
4.3.2 積分散光儀流場及溫度模擬 131
4.3.3 相對濕度分布換算 140
4.3.4 微粒散光係數變化量計算 142
4.3.5 不同濕度下微粒散光係數變化量計算 152
第五章 結論與建議 155
5.1 結論 155
5.2 建議 156
參考文獻 158
圖目錄
圖2.1 積分散光儀示意圖 17
圖3.1 研究架構圖 32
圖3.2 濕度對微粒吸濕成長因子影響之資料流向圖 34
圖3.3 濕度對微粒吸濕成長因子影響之研究流程圖 35
圖3.4 相對濕度對微粒群分徑個數濃度影響之實驗設備圖 38
圖3.5 相對濕度對微粒吸濕成長因子影響氣膠流經設備示意圖 46
圖3.6 濕度對微粒粒徑分布及散光係數影響之資料流向圖 51
圖3.7 濕度對微粒粒徑分布及散光係數影響之研究流程圖 53
圖3.8 濕度對微粒粒徑分布及散光係數影響之實驗設備圖 58
圖3.9 濕度與大氣微粒散光係數關係解析之研究流程圖 68
圖3.10 大氣微粒散光係數計算模式建立及檢討之資料流向圖 69
圖3.11 不同濕度下積分散光儀測值意義解析之資料流向圖 75
圖3.12 不同濕度下積分散光儀測值意義解析之研究流程圖 77
圖4.1 100 nm純鹽類氯化鈉及硫酸銨微粒潮解曲線 84
圖4.2 100 nm硫酸銨及硝酸銨內部混合微粒潮解曲線 87
圖4.3 三維粒徑分布隨濕度變化圖 91
圖4.4 大氣微粒潮解曲線 97
圖4.5 微粒成長因子隨粒徑及相對濕之分布曲面 105
圖4.6 硫酸銨微粒在不同濕度下之粒徑分布 109
圖4.7 硝酸銨微粒在不同濕度下之粒徑分布 110
圖4.8 Glutaric acid微粒在不同濕度下之粒徑分布 112
圖4.9 硫酸銨、硝酸銨內部混合微粒在不同濕度下之粒徑分布 113
圖4.10 硝酸銨、Glutaric acid內部混合微粒在不同濕度下之粒徑分布 115
圖4.11 (4.1)式模式殘項之機率分布 128
圖4.12 積分散光儀內部納入求解結構示意圖 129
圖4.13 積分散光儀解析用之網格分布示意圖 130
圖4.14 正常操作狀態積分散光儀流場速度向量圖 132
圖4.15 正常操作狀態積分散光儀流場等速度線分布圖 135
圖4.16 正常操作狀態積分散光儀等溫度線分布圖 138
圖4.17 典型都會微粒在不同濕度下之粒徑分布 145
圖4.18 典型都會微粒在不同濕度下之表面積分布 146
圖4.19 郊區微粒在不同濕度下之粒徑分布 148
圖4.20 郊區微粒在不同濕度下之表面積分布 149
圖4.21 海鹽微粒在不同濕度下之粒徑分布 150
圖4.22 海鹽微粒在不同濕度下之表面積分布 151
表目錄
表2.1 微粒成長熱力學函數 23
表2.2 大氣微粒散光係數計算模式比較 29
表3.1 濕度對微粒吸濕成長因子探討使用儀器 36
表3.2 濕度對微粒粒徑分布及散光係數影響之研究變因 54
表3.3 受測微粒組成物質基本性質 56
表3.4 濕度對微粒粒徑分布及散光係數影響研究使用儀器 56
表3.5 大氣微粒散光係數計算模式建立及檢討之觀測變數 68
表3.6 大氣微粒散光係數計算模式建立及檢討所需儀器 70
表3.7 標準k-e紊流模式閉合常數 81
表3.8 本研究流場及溫度場求解所用之收斂條件 82
表4.1 較吸濕微粒及較不吸濕微粒之粒徑成長因子 102
表4.2 MOUDI採得微粒樣品之水溶性成分含量 103
表4.3 本研究所得微粒成長熱力學函數與類似研究比較 106
表4.4 各濕度微粒粒徑分布差異t檢定之P值 116
表4.5 微粒粒徑分布模式值及實測值差值之95%信賴區間 118
表4.6 自行產製微粒綠光散光係數測定結果 120
表4.7 各濕度微粒散光係數差異t檢定之P值 121
表4.8 微粒散光係數模式值及實測值差值之95%信賴區間 123
表4.9 本研究所得大氣微粒散光係數模式 125
表4.10 散光係數模式值及實測值關係變異數分析表 127
表4.11 各溫度案例溫度場邊界條件 131
表4.12 各案例溫度場相應相對濕度分布 141
表4.13 典型都會微粒粒徑分布模式參數值 143
表4.14 郊區微粒粒徑分布模式參數值 147
表4.15 海鹽微粒粒徑分布模式參數值 149
表4.16 來自各地區微粒之散光係數測值低估程度 153
參考文獻
Anderson, T. L., D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Orgen, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, and T. S. Bates 1996, Performnace characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, Journal of Atmospheric and Oceanic Teechnology, 13, 967-986.
Anderson, T. L. and J. A. Orgen 1998, Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Science and Technology, 29, 57-69.
Appel, B. R., Y. Tokiwa, J. Hsu, E. L. Kothny, and E. Hans 1985, Visibility as related to atmospheric aerosol constituents, Atmospheric Environment, 19, 1525-1534.
Ayers, G. P., J. L. Gras, R. W. Gillett, and S. T. Bentley 1990, The LaTrobe Valley aerosol visibility study. A survey of results. Clean Air 24/1, 18-26.
Beuttell, R. G. and A. W. Brewer 1949, Instruments for the measurement of visual range, J. Sci. Instrum. Phys. Ind., 26, 357-359.
Bodhaine, B. A., N. C. Ahlquist and R. C. Schnell 1991, Three-wavelength nephelometer suitable for aircraft measurement of background aerosol scattering coefficient, Atmospheric Environment, 25A, 2267-2276
Bodhaine, B. A. 1979, Measurement of the Rayleigh scattering properties of some gases with a nephelometer, Applied Optics, 18, 121-125.
Bohern, C. F. and D. R. Huffman. 1983, Absorption and Scattering of Light by Small Particles. John-Wiley & Sons, New York.
Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen, and G. M. Bailey 1999, Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques, Atmospheric Environment, 33, 3237-3250.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hofmann. 1992, Climate forcing by anthropogenic aerosols, Science, 255, 423-430.
Clark, E. 1995, The impacts of rural dust on air quality in Brisbane. B. S.c. (Honour) Dissertation, Raculty of Environmental Sciences, Griffith University.
Cocker, D. R., N. E. Whtlock, R. C. Flagan, J. H. Seinfeld 2001 Hygroscopic properties of Pasadena, California aerosol, Aerosol Science and Technology, 35, 637-647.
Cruz, C. N. and S. N. Pandis 2000, Deliquescene and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environmental Science and Technology, 34, 4313-4319.
Dzuby, T. G., R. K. Stevens, C. W. Lewis, D. H. Hern, W. J. Courtney, J. W. Tesch, and M. A. Mason 1982, Visibility and aerosol composition in Houston, Texas, Environmental Science and Technology, 16, 514-525
Friedlander, S. K. 2000, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York.
Gras, J. L., R. W. Gillett, S. T. Bentley, G. P. Ayers, and T. Firestone. 1991 CSIRO-EPA Melbourne Aerosol Study. CSIRO Division of Atmospheric Research.
Gras, J. L. 1996 A report to department of Environmental Protection of western Australia on fine-particle haze in Perth. CSIRO Division of Atmospheric Research, CSIRO.
Groblicki, P. J., G. T. Wolff, and R. J. Countess. 1981, Visibility reducing species in the Denver ‘brown cloud’ — I. Relationships between extinction and chemical composition. Atmospheric Environment, 15, 2473-2484.
Hanel G. and Zankl B. 1979, Aerosol size and relative humidity: water uptake by mixtures of salts, Tellus, 31, pp. 478-486.
Hasan, H. and T. G. Dzubay 1983, Apportioning light extinction coefficients to chemical species in atmospheric aerosol, Atmospheric Environment, 17, 1573-1581.
Hatakeyama, S., K. Izumi, H. Akimoto 1985, Yield of SO2 and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions, Atmospheric Environment, 19, 135-141.
Hegg, D., T. Larson and Po-Fat Yuen 1993, A theoretical study of the effect of relative humidity on scattering by tropospheric aerosols, Journal of Geophysical Research, 98, D10, 18,435-18,439.
Heintzenberg, J. and H. Quenzel 1973, Calculations on the determination of the scattering coefficient of turbid air with integrating nephelometers, Atmospheric Environment, 7, 509-519.
Hidy, G. M. 1984, Aerosols — An Industrial and Environmental Science. Academis Press, Orlando.
Hinds, W. C. 1999, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles. John-Wiley & Sons, New York.
Horvath, H. 1998, Influence of Atmospheric Aerosols upon the Global Radiation Balance, Chapter 16 of IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Volume 5, Atmospheric Particles. (Roy M. Harrison and Rene Van Grieken eds) John-Wiley & Sons, New York.
Jaenicke, R. 1993, Tropospheric aerosols, in Aerosol-Cloud-Climate Interaction, edited by P.V. Hobbs. Academic Press, San Diego, CA; pp. 1-31.
Kerminen, V. M. 1997, The effects of particle chemical character and atmospheric processes on particle hygroscopic properties, Journal of Aerosol Science, 28(1), pp. 121-132.
Lowenthal, D. H.; C. F. Rogers, P. Saxena, J. G. Watson, J. C. Chow 1995, Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors, Atmospheric Environment, 29, 751-766.
Malm, W.C. and G. Persha. 1991, Considerations in the accuracy of a long-path transmissometer, Aerosol Science and Technology, 14, 459-471.
Malm, W. C. and S. M. Kreidenweis 1997, The effect of models of aerosol hygroscopicity on the apportionment of extinction, Atmospheric Environment, 31, 1965-1976.
Mathai, C. V., J. G. Watson, Jr., C. F. Rogers, J. C. Chow, I. Tombach, J. O. Zwicker, T. Cahill, P. Feeney, R. Eldred, M. Pitchford, and P. K. Mueller, 1990. Intercomparison of ambient aerosol sampler used in western visibility and air quality studies, Environmental Science and Technology, 24, 1090-1099.
McCartney, E. J. 1976, Optics of the Atmosphere — Scattering by Molecules and Particles, John Wiley & Sons, New York.
McMurry, P. H. and M. Stolzenburg 1989, On the sensitivity of particle size to relative humidity for Los Angeles aerosols, Atmospheric Environment, 23(2), 497-507.
McMurry, P. H., X. Wang, K. Park, K. Ehara 2002, The relatiohship between mass and mobility for atmospheric particle: a new technique for measuring particle density, Aerosol Science and Technology, 36, 227-238.
Meng, Z., J. H. Seinfeld, P. Saxena, and Y. P. Kim 1995, Contribution of water to particulate mass in the South Coast Air Basin, Aerosol Science and Technoloby, 22, 111-123.
Middleton, W. E. K. 1958, Vision Through the Atmosphere. University of Toronto Press, Otario, Canada.
Montgometry, D. C. 2001, Engineering Statistics. John Wiley and Sons, New York, U.S.A.
Omar, A. H., S. Biegalski, S. M. Larson, S. Landsbewrger 1999b Particle contributions to light extinction and local forcing at a rural Illinois site, Atmospheric Environment, 33, 2637-2646.
Ouimette , J. R. and R. C. Flagan 1982, The extinction coefficient of multicomponent aerosols, Atmospheric Environment, 16, 2405-2419.
Perry, H. R. and D. Green 1984 Perry’s Chemical Engineers’ Handbook, p. 12-12, McGraw-Hill, New York.
Pitchford, M. L., and P. H. McMurry 1994, Relationship between measured water vapor growth and chemistry f atmospheric aerosol for Grand Canyon, Arizona, in winter 1990. Atmospheric Environment 28, 827-839.
Posfai, M., H. F. Xu, J. R. Anderson, and P. R. Buseck 1998, Wet and dry sizes of atmospheric aerosol particles: An AFM-TEM study, Geophysical Research Letters, 25, 1907-1910.
Pryor, S. C., R. Simpson, L. Guise-Bagley, R. Hoff, S. Saklyama, and D. Steyn 1997, Visibility and aerosol composition in the Fraser Valley during REVEAL, Journal of the Air and Waste Management Association, 41, 147-156.
Reist, P. C. 1993, Aerosol Science and Technology, p. 268, McGraw-Hill, New York.
Ristovski, Z. D., L. Morawska, J. Hitchins, and W. Barron 1998, Influence of the sheath air humidity on the SMPS measurements of hygroscopic aerosols, Journal of Aerosol Science, 29, S327.
Rogers, C. F., J. G. Waston, D. Day, and R. G. Oraltay 1998, Real-time liquid water mass measurement for airborne particulates, Aerosol Science and Technology, 29, 557-562.
Ruby, M. G. 1985, Visibility measurement methods: I. integrating nephelometer, Journal of the Air Pollution Control Association, 35, 244-248.
Rupprecht & Patawshnick Co., Inc., 2000. Operating Manual — Sample Equilibrium System with Relative Humidity Module, pp. 1-2, Albany, NY.
Saxena, P. and L. M. Hildemann 1996, Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, Journal of Atmospheric Chemistry, 24, 57-109.
Saxena, P. and L. M. Hildemann 1997, Water absorption by organics: survey of laboratory evidence and evaluation of UNIFAC for estimating water activity, Environmental Science and Technology, 31, 3318-3324.
Seinfeld, J. H. 1989, Urban air pollution: state of science, Nature, 243, 745-752.
Seinfeld, J. H. and S. N. Pandis 1998, Atmospheric Chemistry and Physics — From Air Pollution to Climate Change, John Wiley & Sons, New York.
Sisler, J. F. and W. C. Malm 1994, The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States, Atmospheric Environment, 28, 851-862.
Sisler, J. F. and W. C. Malm 1997, Characteristics of winter and summer aerosol mass and light extinction on the Colorado plateau, Journal of the Air & Waste Management Association, 47, 317-330.
Sloane, C. S. 1983, Optical properties of aerosols - comparison of measurements with model calculations, Atmospheric Environment, 17, 409-416.
Sloane, C. S. and G. T. Wolff 1985, Prediction of ambient light scattering using a physical model responsive to relative humidity: validation with measurements from Detroit, Atmospheric Environment, 19, 669-680.
Sloane, C. S. 1986, Effect of composition on aerosol light scattering efficiencies, Atmospheric Environment, 20, 1025-1037.
Sloane, C. S. and W. H. White 1986, Visibility: an evolving issue, Environmental Science and Technology, 20, 760-766.
Swietlicki, E., J. Zhou, O. H. Berg, B. G. Martinsson, G. Frank, S. Cederfelt, U. Dusek, A. Berner, W. Birmili, A. Wiedensohler, B. Yuskiewicz, K. N. Bower 1999,. A closure study of sub-micrometer aerosol particle hygroscopic behavior. Atmospheric Research 50, 205-240.
Tang, I. N. 1980, Deliquescence properties and particle size change of hygroscopic aerosls. in Generation of Aerosols, edited by K. Willeke, Chap. 7, pp. 153-167, Ann Arbor, Michigan.
Tang, I. N., H. R. Munkelwitz, and J. G. Davis 1977, Aerosol growth studies — II. preparation and growth measurements of monodisperse salt aerosols,” Journal of Aerosol Science, 8, 149-159.
Tang, I. N. and H. R. Munkelwitz 1977, Aerosol growth studies — III. ammonium bisulfate aerosols in a moist atmosphere, Journal of Aerosol Science, 8, 321-330 .
Tang, I. N., H. R. Munkelwitz, and J. G. Davis 1978, Aerosol growth studies — IV. phase transformation of mixed salt aerosols in a moist atmosphere, Journal of Aerosol Science, 9, 505-511.
Tang, I. N. and H. R. Munkelwitz 1994, Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, Journal of Geophysical Research, 99, 18801-18808.
Tang, I. N. 1996, Chemical and Size Effects of hygroscopic aerosols on light scattering coefficients, Journal of Geophysical Research, 101, 19245-19250.
Tang, I. N., A. C. Tridico, K. H. Fung 1997, Thermodynamic and optical properties of mixed-salt aerosols of sea salt aerosols, Journal of Geophysical Research, 102, 23269-23275.
Tang, I. N. 1997, Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance, Journal of Geophysical Research, 102, 1883-1893.
Tritton, D. J. 1988, Physical Fluid Dynamics (second edition), Oxford University Press., London.
USEPA 1980, Interim Guidance for Visibility Monitoring. Research Triangle Park. EPA-450/2-80-082.
USEPA 1996, Air Quality Cirteria for Particulate Matter. Research Triangle Park. EPA-600/P-95-001aF.
USEPA 1999, Visibility Monitoring Guidance. Research Triangle Park. EPA-454/R-99-003.
Van de Hulst, H. C. 1957, Light Scattering by Small Particles. John-Wiley & Sons, New York.
Waggoner, A. P. and R. E. Weiss 1980, Comparison of fine particle mass concentration and light scattering in ambient aerosol, Atmospheric Environment, 14, 623-628.
Wexler, A. S. and Seinfeld, J. H. 1991, Second-generation inorganic aerosol model, Atmospheric Environment 25A, 2731-2748.
White, W. H. and P. T. Roberts 1977, On the nature and origin s of visibility-reducing aerosols in the Los Angeles air basin, Atmospheric Environment, 11, 803-812.
White, W. H., E. S. Macias, R. C. Nininger, and D. Schorran 1994, Size-resolved measurements of light scattering by ambient particles in the southwestern U.S.A., Atmospheric Environment, 28, 909-921.
White, W. H. 1986, On the Theoretical and empirical basis for apportioning extinction by aerosols: a critical review, Atmospheric Environment, 20, 1659-1672.
Widmann, J. F. and E. J. Davis 1997, Evaporation of multicomponent droplets, Aerosol Science and Technology, 27, 243-254.
Williams, D. J., J. W. Milne, D. B. Roberts, and D. J. A. Jones. 1982, The optical properties of Sydny’s brown haze. In: Carras, Johnson (Eds.), Urban Atmosphere — Sydney, A Case Study, pp. 125-140.
Wind, L. and W. W. Szymanski 2002, Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media, Measurement Science and Technology, 13, 270-275.
Xie, G., and T. Okada 1995, Water transport behavior in Nafion 177 membranes. Journal of the. Electrochemistry Society 142, 3057-3062.
Zhang, X. Q., H. McMurry, S. V. Hering, G. S. Casuccio 1993,. Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon. Atmospheric Environment 27A, 1593-1607.
Zhang, X., B. J. Turpin, P. H. McMurry, S. V. Hering and M. R. Stolzenburg 1994, Mie theory evaluation of species contributions to 1990 wintertime visibility reduction in the Grand Canyon, Journal of the Air and Waste Management Assocaition, 44, 153-162.
施博邁 1993, 相對濕度對氣膠微粒粒徑分佈的影響,國立台灣大學環境工程研究所碩士論文。
陳律言 1994, 自然通風對室內空氣品質影響之模擬研究,國立台灣大學環境工程研究所碩士論文。
黃偉鳴 1994, 相對濕度對混和氣膠微粒成長之影響,國立台灣大學環境工程研究所碩士論文。
黃小林 1996, 海水飛沫衍生氣膠微粒潮解之研究,國立台灣大學環境工程研究所碩士論文。
陳英堂 1995, 臺灣地區氣膠微粒粒徑分布與散光係數的量測,國立中央大學環境工程研究所碩士論文。
黃明雄 1997, 台灣地區大氣微粒特性之研究-墾丁氣膠微粒組成及濃度對大氣能見度的影響,國立中央大學環境工程研究所碩士論文。
林立偉 1999, 墾丁地區氣膠微粒粒徑分布與氣象因子對散光係數影響之研究,國立中央大學環境工程研究所碩士論文。
袁中新、洪崇軒、王宏恩、劉山豪 1999a, 南台灣地區懸浮微物化徵及生成機制探討, 一九九九年氣膠微粒科技國際研討會, 台北, 253-261.
袁中新、張瑞正、袁菁、楊宏宇、林文印、李崇垓、李崇德 1999b, 能見度與懸浮微粒物化特徵之相關性探討, 一九九九年氣膠微粒科技國際研討會, 台北, 253-261.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王千倖(1998)。落實資訊教育-從教育學程中的資訊教育課程教學設計著手。視聽教育雙月刊,39(4),14-19。
2. 王千倖(1996)。電腦與教學。教育實習輔導季刊,2(1),37-39。
3. 王曉璿(1999)。資訊融入各科教學探究。菁莪季刊,8(4),13-19。
4. 王全世(2000)。對資訊科技融入各科教學之資訊情境的評估標準。資訊與教育,77,36-47。
5. 尹玫君(2000)。國小老師網路的教學素養與培育。資訊與教育,79,13-22。
6. 何榮桂、郭再興(1996)。多媒體電腦輔助教學在網路上的發展趨勢。資訊與教育,55,25-31。
7. 何榮桂(1998)。從教育部之資訊教育推展策略看未來中小學資訊教育的遠景。資訊與教育,68,2-13。
8. 何榮桂(2001)。台灣資訊教育的現況與發展-兼論資訊科技融入教學。資訊與教育,87,22-35。
9. 何榮桂(2001)。從九年一貫新課程規劃看我國資訊教育未來的發展。資訊與教育,85,5-14。
10. 吳正己(2001)。從英特爾e教師計劃談資訊融入教學。資訊與教育,85,15-21。
11. 邱貴發(1994)。電腦輔助學習的理念與發展方向。教學科技與媒體,2,15-22。
12. 邱貴發(1995)。從知識學習的周邊問題看資訊科技在教學的應用。視聽教育雙月刊,37(3),1-6。
13. 邱瓊慧(2001)。中小學資訊科技融入教學之實踐。資訊與教育,88,3-9。
14. 洪華欣、施郁芬(1998)。未來教師應具備的「電腦與教學」相關知能。視聽教育雙月刊 ,39(4),20-32。
15. 洪若和(1989)。淺析電腦輔助教學。國教之聲,22(3),39-49。